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Many common observations are inexplicable by single-scattering arguments: the variation of
brightness and color of the clear sky; the brightness of clouds; the whiteness of a glass of milk; the
appearance of distant objects; the blueness of light transmitted in snow and other natural ice
bodies; the darkening of sand upon wetting. Yet multiple scattering is seldom mentioned in optics
textbooks. It is possible to understand many observable phenomena without invoking the
complete theory of multiple (incoherent) scattering. A simple two-stream theory, in which
photons are constrained to be scattered in only two directions, forward and backward, is adequate
for interpreting many observations, even quantitatively, and it paves the way for advanced study.

I. INTRODUCTION

Multiple scattering of light gives rise to observable phe-
nomena that cannot be explained by single-scattering argu-
ments. For example, if single scattering prevailed in the
atmosphere the sky would be uniform in color, which is
contrary to what is observed. Clouds are white and bright
mostly because of multiple scattering. Attenuation of visi-
ble light by ice grains is not spectrally selective, and yet
crevasses and ice caves and even holes in ordinary snow
may display hues more vivid than those of the bluest sky.
Milk is a suspension of small particles that scatter blue light
more than red, and yet a glass of milk is white. A white
sandy beach—or salt, or sugar—has properties not shared
by its grains. And who has not noticed sand darken after
being washed by waves, or soil darken when wet by rain?

Single-scattering arguments are insufficient to explain
these common observations. Yet multiple scattering is sel-
dom mentioned in optics textbooks. A student or teacher
who would learn something about multiple scattering must
consult monographs such as those by Chandrasekhar' or
by van de Hulst.> Although these are invaluable for special-
ists, neophytes are likely to find them formidable: They
emphasize techniques for solving equations rather than de-
veloping physical intuition by explaining observations us-
ing simple models.

Because of this lack of suitable introductory treatments
of multiple light scattering, I offer the following. My pur-
pose is to convey as much physical understanding as possi-
ble from the least amount of mathematics. Approximate
equations, which can be solved exactly, are derived, rather
than exact equations which can be solved only approxi-
mately. This provides a simple theoretical framework for
interpreting many observations. As an intended side effect,
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the terms and concepts found in advanced treatises are in-
troduced, thereby smoothing the way for further study.

II. TWO-STREAM EQUATIONS OF RADIATIVE
TRANSFER

Any scattering medium is composed of discrete scat-
terers, be they molecular or particulate. Since it is inconve-
nient to consider this discreteness explicitly, we usually re-
place discrete media with hypothetical continuous media,
the scattering and absorption properties of which are deter-
mined by those of the former. The resulting continuum
theories are applicable to discrete media provided they con-
tain a great many scatterers in any volume of interest.

Throughout this paper incoherent scattering is assumed,
that is, we do not take into account phase differences
between scattered waves. Coherent scattering is treated in
Refs. 3-7. There is no sharp boundary between coherently
and incoherently scattering media. There are merely differ-
ent approximate theories, in some of which phases are tak-
en into account and in others they are not, which are ap-
plied with varying degrees of success to the prediction and
interpretation of observations. An ordinary cloud is a typi-
cal medium in which incoherent scattering dominates what
is observed, whereas a glass of pure water is a medium in
which coherent scattering dominates (see, e.g., Ref. 8 for a
good discussion of the scattering interpretation of Fresnel’s
equations).

We also assume that radiation can be scattered in only
two directions, forward and backward. Finally, polariza-
tion is ignored.” These simplifying assumptions keep the
mathematics manageable without greatly distorting our
picture of reality. They underlie the elementary two-stream
theory first set down by Schuster.'® Subsequently, other
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Fig. 1. Conservation of radiant energy applied to theregion Azin a scatter-
ing-absorbing medium of infinite lateral extent yields the two-stream
equations of transfer for the downward and upward intensities /, and 1, .

two-stream equations have been derived (e.g., Refs. 11-13;
see Refs. 14 and 15 for comparisons of various two-stream
theories), usually by beginning with the integro-differen-
tial equation of radiative transfer and making various ap-
proximations. Our approach is to sidestep the exact equa-
tion and give a physical derivation similar to that of
Schuster’s. '’

After a photon is emitted it suffers only one of two fates
when it interacts with matter: (1) it is absorbed, that is, it
ceases to exist, although its energy is taken up by whatever
it interacts with; or (2) it is scattered, in which instance it
survives the interaction intact but possibly changes direc-
tion. Consider a continuous scattering—absorbing medium,
infinite in lateral extent, bounded by parallel planes (i.e., a
plane-parallel medium). We assume that photons are emit-
ted only by sources outside this medium. To derive the
equations of radiative transfer for it we apply a radiant
energy balance to a small region Az (Fig. 1). Photonsin a
given direction incident on this region are lost by absorp-
tion and by scattering within it. But there is also a gain of
photons because those in one direction are scattered into
the opposite direction. By 7, is mean the amount of radiant
energy in 2 narrow frequency interval that crosses unit area
per unit time in the downward direction. I shall call I, the
monochromatic intensity in the downward direction, or
simply the downward intensity.'® I, is defined similarly for
the upward direction.

I, and I, change, in general, with the depth z into the
medium because of absorption and scattering, which are
specified by the (volumetric) absorption coefficient x and
the (volumetric) scattering coefficient 3. These cannot be
obtained within the framework of radiative transfer theory
(a macroscopic theory); recourse must be had to micro-
scopic theories. For a collection of independent identical
scatterers the scattering coefficient 3 is simply the individ-
ual scattering cross section times the number density
(number per unit volume). Thus 1/8 has the dimensions
of length and may be interpreted as the scattering mean free
path (i.e., the average distance between scattering events).
Similarly, « is the absorption cross section times the num-

525 Am. J. Phys., Vol. 55, No. 6, June 1987

ber density and 1/« is the absorption mean free path.

One further assumption will be made before proceeding:
There are no time delays. That is, the dimensions of the
medium are such that any change in the external illumina-
tion is felt instantaneously throughout it.

Now we apply conservation of radiant energy to Az, first
for the downward intensity:

I1,(z) + BAzp, I, (z + A2)

=kAzl (z) + BAzp, I, (2) + 1, (z + Az), (1)
where p,, is the probability that a photon directed down-
ward is scattered upward (and similarly for p,, p,,, and
P., ). The terms on the left side of Eq. (1) are gains, while
those on the right side are losses. If we divide both sides of

Eq. (1) by Az and take the limit as Az— 0, we obtain the
following differential equation:

dl,

—= —«l, —pp, 1, +PBp:. 1, (2)
dz
and similarly for the upward intensity:
dl
—dz—T=KIT +BPNIT _ﬂpulx . (3)

The sign reversal between Eqgs. (2) and (3) occurs because
the downward intensity is attenuated in the direction of
increasing z, whereas the upward intensity is attenuated in
the direction of decreasing z.

We take the medium to be isotropic, that is, p,, =p,
and p,, =p,,. This is to be distinguished from isotropic
scattering (p,, = p., and p,, =p, ) or an isotropic radi-
ation field (I, = I,). As we shall see, isotropic scattering
does not necessarily give rise to an isotropic radiation field,
nor does anisotropic scattering necessarily give rise to an
anisotropic radiation field. Examples of isotropic media are
collections of spherical scatterers or randomly oriented
nonspherical scatterers. A medium composed of non-
spherical oriented scatterers is anisotropic.

In our model, photons must be scattered either forward
or backward, which requires that

Py +py=p, +p,=1. (4)
The asymmetry parameter g, defined as the mean cosine of

the scattering angle (which for us has only two values, 1
and — 1)

gz(l)pu+(_1)p“ (5)
is a single number that specifies the degree of anisotropy of
the scattering. It lies between 1 (strict forward scattering)
and — 1 (strict backward scattering); it is O for isotropic
scattering. From Eqgs. (4) and (5) it follows that the four
probabilities in Eqgs. (2) and (3) can be expressed in terms
of g only:

Py =p,=1-8/2, p,=p,=(1+g)/2. (6)

If we divide Egs. (2) and (3) by x + $3, transform the
variable from physical depth z to optical depth r defined by

¢=f (x+p)dz, (N
0
and use Eq. (6), Egs. (2) and (3) become
dl _
el A R 4 A N el (8)
dr
dI _
_r=11_501+g11'-501 g111 (9)
dr
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where the single-scattering albedo @, is defined as 8/
(x + ). If the medium is uniform, the optical depth,
which is dimensionless, is z(« + /), and may be interpret-
ed as the depth in units of total mean free path 1/(«x + 8).
Because the absorption and scattering coefficients depend
on frequency, in general, so does the optical depth. The
single-scattering albedo varies between O (no scattering)
and | (no absorption). Both limits are idealizations never
realized in practice.

Equations (8) and (9) are the two-stream equations of
radiative transfer. Although we shall not do so, these equa-
tions can be extended to N streams, in which instance we
obtain /N coupled differential equations of the same form as
Eqgs. (8) or (9) but with NV + 1 terms on the right side; one
term represents attenuation and the N remaining terms
represent all the possible ways in which light is scattered
into one direction from all other directions. In the limit as
N goes to infinity, sums become integrals and the set of
equatizons collapses into a single integro-differential equa-
tion. "

A more compact form of Egs. (8) and (9) is obtained by
first adding and then subtracting them:

L Iy =— U -a), +1,), (10)
dr

A +1) = — U —mo)U, ~1,). (1n
dr

Equations (8) and (9) [or, equivalently, Egs. (10) and
(11)] are consequences merely of conservation of energy
applied to streams of photons constrained to only two di-
rections. Equations like these were first obtained by Schus-
ter,'” although he included emission and restricted himself
to isotropic scattering (g = 0).

Now we shall try to obtain as much physical insight as
possible from these simple equations by solving them sub-
ject to various boundary conditions, by interpreting the
solutions, and by making a connection between them and
observations.

II1. CONSERVATIVE SCATTERING: NO
ABSORPTION

No medium is strictly nonabsorbing. Nevertheless, we
can sometimes ignore absorption and set the single-scatter-
ing albedo to unity without making great errors in calculat-
ed observable quantities (e.g., reflection of visible light by
clouds). With this assumption Egs. (10) and (11) have the
simple solutions

I, =D+C(l—7%), I,=D-C(1+7*), (12)
provided that g is independent of 7, where 7* = (1 — g)7is
the scaled optical depth. The constants C and D are deter-
mined by conditions at the upper (r=0) and lower
(7 = 7) boundaries, where the (total) optical thickness of a
medium with physical thickness 4 is

h
?:J‘ (k+B)dz. (13)
0

A. Equilibrium solution

Suppose that the medium is illuminated from above
[1,(0) =1,] and that a perfect reflector underlies it
[1, @) =1, (7)]. For this case C = 0 and D = I, so that
the radiation field is uniform and isotropic (i.e., I, = I, for
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all 7, and g). This is the equilibrium solution. To under-
stand why this is so called, consider the medium to be en-
closed by two perfect reflectors, above and below. The solu-
tion to Eq. (12) in thisinstance is C = O and D is arbitrary.
That is, if photons are introduced into the medium, they
rattle around (none are absorbed or leak from the medi-
um) until the intensity is everywhere uniform and isotrop-
ic.

B. Reflection and transmission

Suppose that photons that leak out of the lower bound-
ary of the medium are not returned to it, either because
there is nothing to scatter them back or they are absorbed
[ie., I, (F) = 0]. In this case, solution of Eq. (12) yields
the following expressions for the albedo'” (or reflection co-
efficient) R and transmission coefficient T:

R=1,(0)/I,=7/(2 +7),

which satisfy R + T = 1.

Note that only the scaled optical thickness 7* determines
these two observable properties of a (nonabsorbing ) muliti-
ple-scattering medium. Thus two such media are optically
similar if the product of 7and (1 — g) is the same for both
rather than 7 and g separately. Therefore, it is not possible
to determine both 7 and g uniquely by measuring transmis-
sion and reflection.

As the optical thickness increases, R and T approach the
limits 1 and O, respectively. R will be within 1% of its
asymptotic value if 7> 200/(1 — g), which provides a cri-
terion for when a medium can be taken to be optically thick
(i.e., effectively infinitely thick).

If g = 1 (forward scattering only), then R = O regard-
less of the optical thickness. But it does not then follow that
R is necessarily 1 if g = — 1 (backward scattering only).

We get more insight into Eq. (15) if we rewrite it using
Eq. (6): T=1/(1 + p,, 7). The physical interpretation of
this is that photons are lost (strictly) to the downward
stream only if they are scattered in the opposite direction.

For small (scaled) optical thickness we can expand Eq.
(15):

T —7*2~exp( —T*/2), (T*<1).

Thus the incident intensity is attenuated exponentially
only if multiple scattering is negligible. Suppose that once a
photon has been scattered in the backward direction, it is
removed from the medium. In this instance, there is no
multiple scattering, and the corresponding transmission
coefficient exp( —7*/2) is always less than that given by
Eg. (15). All else being equal, therefore, attenuation is less
in a multiple-scattering medium than in a single-scattering
medium, which is perhaps contrary to what one expects
because of the word “multiple.” This is so because photons
scattered out of a particular direction can find their way
back into that direction by being scattered again one or
more times.

(14)
(15)

C. Reflection and transmission by clouds

Multiple-scattering media such as clouds have high albe-
dos (at visible wavelengths) because incident photons ree-
merge after having been scattered many times by particles
that are only weakly absorbing. One cannot explain obser-
vations of clouds on the basis of single-scattering argu-
ments.
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Nevertheless, one encounters frequently the statement
that clouds are white because they are composed of nonse-
lective scatterers. It is true that cloud droplets are so large
compared with the wavelengths of visible light that their
scattering cross sections are nearly independent of wave-
length. This is a sufficient condition for the whiteness of
clouds, but it is not necessary. The converse is not true: A
collection of selective scatterers is not necessarily colored.
For example, milk is a suspension of small particles that
scatter blue light more than red. You can demonstrate this
by adding a few drops of milk to water and illuminating the
resulting suspension with a collimated beam of white light.
The scattered light will be bluish and that transmitted will
be reddish. Yet a glass of milk is white. We can understand
why by differentiating Eq. (14) with respect to the wave-
length A:

4R ___ 2 47

di  (247)* di
If the optical thickness 7* (which is proportional to the
scattering coefficient 3) is independent of wavelength then
so is R. But the converse is not true. For sufficiently large
optical thickness, R is independent of wavelength regard-
less of the wavelength dependence of 7*.

To proceed further we need to estimate the optical thick-
ness of clouds. For simplicity, let us assume that they are
uniform and are composed of droplets all of which have the
same radius a. The optical thickness of a suspension of N
identical particles per unit volume is

F=NC., h=AC./v) h, (17)

where the extinction cross section C,,, is the sum of absorp-
tion and scattering cross sections (i.e., the particle’s effec-
tive cross-sectional areas for removal of photons from a
beam by absorption and scattering), v is the volume of a
particle, 4 is the thickness of the suspension, and f= Nvis
the fraction of the total suspension volume occupied by the
particles. For spheres much larger than the wavelength of
the light illuminating them, C,,, is approximately twice the
geometrical cross section ma? (see, e.g., Ref. 18, p. 107).
Clouds are quite tenuous: fis typically around 31077,
corresponding to a liquid water content of 0.3 g/m —> (Ref.
19, p. 15). Cloud droplets are distributed in size (Ref. 19,
pp. 13 and 14), but a diameter of 10 um is representative.
With these assumptions, the approximate optical thickness
of a cloud is 7 = 100h, where /4 is in km. But it is the scaled
optical thickness that appears in Eqs. (14) and (15), so we
need to estimate the asymmetry parameter g. From the
calculations for water droplets tabulated by Irvine and Pol-
lack,?® it is evident that g = 0.85 is a representative value
for cloud droplets at visible wavelengths, that is, scattering
of light by such droplets is highly peaked in the forward
direction. Thus we obtain 7* ~ 144 as a rough estimate for
the scaled optical thickness of a cloud of physical thickness
h. It follows from this result and Eq. (16) that the albedo of
clouds thicker than aboout 1 km would be nearly indepen-
dent of wavelength regardless of the wavelength depend-
ence of scattering by the individual droplets.

The preceding statements may seem, at first glance, to be
incompatible with the colors seen often in thin clouds or at
the edges of thick clouds when looking toward the sun.
Such colors, called iridescence, are consequences of single
scattering. Although fotal scattering by a cloud droplet is
nearly independent of wavelength, the angular distribution
of the scattered light (i.e., the differential scattering cross

(16)
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section) is not. For more on iridescent clouds see Refs. 21—
24.

It is rare for clouds overhead to be so thick that day
becomes night. From Eq. (15) and our estimate for the
optical thickness of clouds it follows that they would have
tobe more than 15-km thick to transmit less than 1% of the
light incident on them. This would require the atmosphere
to be filled uniformly with clouds from the surface to the
tropopause.

D. Refiection by snow

Snow on the ground is one common example of a multi-
ple-scattering medium that is often sufficiently deep for its
albedo to be close to the asymptotic value. Ice grains in
such snow are not necessarily spherical, although they are
rarely the spatial dendrites favored by painters of Christ-
mas cards (see Ref. 25 for a good discussion of how the
shapes of snowflakes change with time after they settle).
Like cloud droplets, these ice grains are nonselective scat-
terers of visible light. The volume fraction fof snow on the
ground varies, but 0.3 is typical. The extinction cross sec-
tion of any large particle is twice its geometrical cross sec-
tion projected onto the beam illuminating it (Ref. 18, p.
107). Thus the extinction cross section of an ice grain is
proportional to the square of a characteristic linear dimen-
sion d}; its volume v is proportional to the cube of d. For ice
grains in snow a representative value for d is about 1 mm.
Because they are much larger than cloud droplets, scatter-
ing by the grains is more sharply peaked in the forward
direction (i.e., g is closer to 1). Let us therefore take g to be
0.93, a reasonable estimate. Thus we estimate the (scaled)
optical thickness 7 of a snowpack 4 meters deep to be 2004
(for finer grained, denser snow the coefficient of 4 will be
even greater). According to this estimate, snow about 1-m
deep is optically thick (i.e., its albedo is within 1% of the
asymptotic value). Absorption has been neglected; to in-
clude it would reduce the depth snow must be for it to be
considered optically thick. In Sec. IV the observable conse-
quences of not neglecting absorption by ice grains in snow
will be discussed.

It may be inconvenient to tunnel deep into snow to verify
my assertion about the optical thickness of snow. Observa-
tions are made more comfortably above snow. Suppose
that a perfect reflector (i.e., a white surface) underlies the
snow, in which case R = 1. Equation (14) applies to snow
over a perfectly black surface. The difference between these
two extreme albedos, which I shall denote as R, and R, is

R, —R, =2/(2+7%).

Snow therefore does not have to be very deep, perhaps a few
tens of centimeters, before it is not possible to tell what
underlies it, which is often observable. Another observa-
tion you can make is of the comparative brightness of snow
and clouds under similar illumination. Because deep snow
is optically thicker than clouds, snow is usually brigher.

E. Diffuse radiation: Cloud light

Few of us are in the habit of staring directly at the sun,
even when it is partially obscured by clouds. More often,
we see diffuse radiation, that is, radiation that has been
scattered (e.g., cloud light or skylight). If there is no illu-
mination from below, the upward intensity 7, is necessarily
diffuse. To emphasize this, I shall henceforth denote this
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quantity as D,. The downward intensity I, is the sum of
two components, an unscattered component I} and a dif-
fuse component D, . We can determine these quantities by
rewriting Eq. (2) as follows:

di,

T +11 =Pn11 +pnIr .

-

The terms on the right side of this equation involve scatter-
ing. Thus the unscattered intensity satisfies the homogen-
eous equation

dr*

+14 =0,

which has the solution /¥ = I, exp( — 7) for the boundary
condition I} (0) = I, (0) = I;. Let us take what underlies
the medium to be perfectly black [i.e., I, (7) =0]. At any
arbitrary optical depth 7 into the medium, the two diffuse
intensities are

D/L,=011-g)7T-71/[1+L1-g)7], (18)
D /Ly={[1+i(1—-g)F~71/
[1+14(1—g)7]} —exp(—7). (19)

The upward intensity vanishes at the lower boundary, and
has its greatest value at the upper boundary. The down-
ward diffuse intensity vanishes at the upper boundary, in-
creases to a maximum, and then decreases toward the low-
er boundary. It follows from inspection of Egs. (18) and
(19) that the two diffuse intensities are approximately
equal for optical depths satisfying

2/(1-g)<r<7—[2/(1-8)]. (20)
This result has a simple physical interpretation, which fol-
lIows from Eq. (6) and the definition of optical depth. The
diffuse radiation field is highly anisotropic near boundar-
ies, but because of scattering it tends toward isotropy as we
move away from them. The quantity 7(1 — g)/2, which is
(approximately) the fraction of photons that have been
reversed in direction in traversing an optical depth 7, is 1
for = 2/(1 — g). Thus at optical depths greater than 2/
(1 — g) from either boundary the diffuse radiation field is
nearly isotropic. This isotropy of diffuse radiation deep
within a multiple-scattering medium can be observed from
an airplane descending through clouds. After entering the
cloud, you soon will have no visual clues to tell up from
down, but eventually you will see the upward intensity be-
gin to decrease (unless you are flying over snow); this is the
signal that your airplane is about to leave the cloud.

Now suppose that we are on the ground looking at
clouds overhead.? The diffuse downward intensity D, (7),
which from Eq. (19) is

D, () /1, ={1/[1+4(1 — g7} —exp(—7), (21)

rises steeply with increasing optical thickness 7 beginning
at7 =0 to a maximum at7~In[2/(1 — g)], and then de-
creases more gradually with a further increase in7 (Fig. 2).
This has observable consequences. A thin cloud layer, say
from a few tens to a few hundreds of meters thick, is
brighter than the clear sky. You can sometimes see this
when the sky is covered with thin clouds. If there are occa-
sional breaks, you can compare the brightness of the clear
and cloudy skies. Very thick clouds result in gloomy days,
when the sky is less bright than on clear days.
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Fig. 2. Diffuse downward intensity of radiation below a nonabsorbing
medium of finite optical thickness illuminated from above. g is the mean
cosine of the scattering angle.

F. Diffuse radiation: S_kylight

Let us now consider what we see when looking upward?®
on a very clear day. Even if the atmosphere were complete-
ly free of particles, we would still see a blue sky because of
molecular scattering. Indeed, particles decrease the spec-
tral purity of skylight.”” Because the number density of
molecules decreases with height, the molecular scattering
coefficient is not uniform. But since this decrease is (ap-
proximately) exponential with a scale height H = 8.4 km,
the optical thickness along a radial path from the surface to
infinity is the same as that for an atmosphere extending
from the surface to H with a constant density equal to the
sea level value:

PoH = Jm Byexp( —z/H) dz,
(V]

where 3, is the sea level molecular scattering coefficient.
The optical thickness shown in Fig. 3 was obtained from
values of 3, tabulated by Penndorf.?®
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Fig. 3. Molecular optical thickness of Earth’s atmosphere along a vertical
path from the surface to infinity.
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Molecular scattering of light is not isotropic, but it is
symmetric about a scattering angle of 90°. Thus we may
takeg = Oin Eq. (21) to obtain an approximate expression
for the intensity of skylight overhead: '

D, /Iy=[1/(14+17)] —exp( —7) (22)

for an atmosphere overlying black ground. If the ground is
white (i.e., perfectly reflecting), the skylight intensity is

D /Iy=1—exp(—7). (23)

Since7is small (Fig. 3), we can expand Eqgs. (22) and (23)
to obtain

Db/I,~\7, D“/I,~7, (24)

where the superscripts indicate the nature of the ground. In
both instances we obtain a blue sky (provided we take into
account the response of the human eye; for more about this
see Ref. 27), but the sky brightness over black ground is
about half that over white ground. This makes sense: Both
direct sunlight and reflected groundlight illuminate the
scatterers.

Only because 7 is small do we have a blue sky. If our
atmosphere were much thicker, the sky would appear quite
different. This is shown in Figs. 4 and 5 (see also Refs. 27
and 29). Skylight intensity is shown as a function of wave-
length for both white and black ground. The optical thick-
nesses are for Earth’s actual atmosphere, and for ones with
ten and 30 times as many molecules. Note that increasing
the number of molecules, which scatter very nearly accord-
ing to the inverse fourth power of the wavelength, does not
make the sky bluer. On the contrary, the intensity increases
at the expense of spectral purity. Here is yet another place
where multiple scattering must be invoked. In the absence
of multiple scattering, an increase in optical thickness
would make the sky brigher with #o change in its spectrum.

Now that we have sharpened our physical intuition, let
us be bold and briefly step outside of the one-dimensional
domain imposed by the two-stream model. Suppose that
the sun is overhead on an extraordinarily clear day, and
that we have an unimpeded view of the horizon. What does
the sky look like in different directions? It is not, as predict-
ed by single scattering, uniform in color. The sky is bluest
near the zenith; it is brightest, but of low spectral purity,
near the horizon. The optical thickness (called the normal
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Fig. 4. Skylight intensity (overhead sky) over white ground. The numbers
denote the optical thicknesses of hypothetical pure molecular atmo-
spheres relative to the actual value for Earth’s atmosphere.
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Fig. 5. Skylight intensity (overhead sky) over black ground. The numbers
denote the optical thicknesses of hypothetical pure molecular atmo-
spheres relative to the actual value for Earth’s atmosphere. Note that the
vertical scale is one-half that in Fig. 4.

optical thickness and denoted by 7, ) in Eq. (23) is that of a
vertical path through the atmosphere, so it applies strictly
to the zenith sky. But let us assume, on physical grounds,
that this equation is valid even if 7 is that for a slant path
through the atmosphere. Except for directions very close to
the horizon, the optical thickness of a slant path is
7,/cos 6, where 6 is the angle measured from the zenith.
With this assumption, the diffuse intensity in the direction
Ois

D /I,=1—exp(—T,/cos8). (25)

Equation (25), approximate to be sure, is in accord with
observations of the color and brightness variation of clear
skies. To further test its validity we can compare it with the
exact calculations of Coulson et al.*° for a pure molecular
atmosphere (over a flat Earth ). This is done in Fig, 6, from
which it is evident that the simple theory [Eq. (25)] is
adequate to explain the variation in brightness and color of
the sky. The best place to observe a sky predicted by Eq.
(25), which applies to a sky over a highly reflecting sur-
face, is from an airplane flying over clouds. At the altitudes
where commercial aircraft fly, there are not many parti-
cles: The scale height for atmospheric particles is a few
kilometers. So we can be reasonably sure that what we
see—dark blues near the zenith and a whitish horizon—is a
property of an atmosphere in which scattering by mole-
cules is predominant.

Before we consider absorption, there is another observa-
tion to which the preceding analysis may be applied: the
appearance of distant objects. One receives not only light
from such objects, but airlight—Ilight scattered by every-
thing along the line of sight—as well. If the object is black,
then all the light one receives is airlight. Its intensity is
proportionalto 1 — exp( — 7), where 7is the optical thick-
ness of the path from observer to object (see Ref. 31 for
more details). If the scatterers are mostly molecules and
very small particles, the optical thickness will be inversely
proportional to the inverse fourth power of the wavelength.
For small optical thicknesses ( €1) the airlight intensity is
proportional to 7 and hence is bluish. But as 7 is increased,
the airlight intensity increases in magnitude while at the
same time becomes less dependent on wavelength. This can
be observed in a series of parallel mountain ridges, one be-
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Fig. 6. Skylight intensity for a pure molecular atmosphere. The curves
were calculated using the simple two-stream theory of this paper. The
ground albedo 0.8 is sufficiently close to 1 that Eq. (25) is a good approxi-
mation, although the calculations were done using an expression for the
diffuse downward intensity over ground with arbitrary albedo [this
expression is not given, but it follows readily from Eq. (12) ]. Here ( )
is for the sky directly overhead; (- - -) is for that about 3.5° above the
horizon; () is for that about 9 degrees; Xs show the detailed calcula-
tions of Coulson ez al.>° for the principal plane (determined by the direc-
tion of the incident sunlight and the normal to the ground) with the sun 23
degrees from the zenith. All intensities have been normalized by that at
500 nm for the near-horizon sky.

hind the other, covered with dark vegetation. The closest
ridges will have their natural color; those somewhat farther
will be bluish; the farthest ridges fade into the whitish hori-
zon sky. To explain this common observation, one must
invoke multiple scattering.

IV. MULTIPLE SCATTERING IN ABSORBING
MEDIA

Let us now consider the more general case of multiple
scattering in an absorbing medium (« > O hencew, < 1). By
differentiating Eq. (10) [Eq. (11)] with respect to 7, sub-
stituting Eq. (11) [Eq. (10)] in the result, then adding and
subtracting the two equations obtained, it follows that

d*F

Z - =K?F,

dr? -

K =(1--20) (1 —Bcg) (26)
where F is either the sum or difference of the two intensi-
ties. Solutions to Eq. (26) are linear combinations of the
two exponential functions exp( + Kr). Since the intended
applications are to optically thick media, we may take the
medium to be infinitely thick. This will simplify the math-
ematics because the coefficients of exp (K7) must vanish in
order to ensure finite intensities. By using Eqgs. (10) or
(11) and the boundary condition I, (0) = I, a bit of alge-
bra gives the downward and upward intensities:

I =Iexp(—K7), I, =I,Rexp(—K7), (27)
where the albedo R =1, (0)/1, is
R=(1-08 —V1 =2 )/(J1—Dg +J1~@0 ) .

(28)

As a check on the correctness of Eq. (28), we note that
R = 1 when®o, = 1. Also, for@,# 1, R = 0forg = 1: With
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no mechanism for redirecting incident photons, they can
never reemerge from the medium. Note that the derivative
of R with respect to @, at @, = 1 is infinite. This is a quanti-
tative statement of what can be stated as an aphorism: In a
multiple-scattering medium, a little bit of absorption goes a
long way. The curves in Fig. 7 show the albedo R as a
function of single-scattering albedo for a few values of g.
We interpret 1 — @, as the probability that a photon is ab-
sorbed in a single interaction with a scatterer; 1 — R is the
probability that it will be absorbed in many such interac-
tions. If 1 — @, = 0.001, for example, then for g =0.9,
1 — R = 0.18. Thus there is an enormous amplification of
absorption—nearly a factor of 200 in this example—in go-
ing from single to multiple scattering. For an incident
downward photon to find its way into the upward intensity
outside the medium, it must, on average, be scattered many
times; the greater g is, the greater the number of scatterings
(in the extreme case g = 1, incident photons never escape).
In each scattering, a photon has a small chance of being
absorbed, but in many scatterings its cumulative chance of
being absorbed increases markedly.

In the context of multiple scattering, a single-scattering
albedo of 0.9 (or even 0.99), which at first glance seems
high, is in fact quite low, especially if the scatterers are
larger than the wavelength and hence have large values of g
(see, e.g., Ref. 32, pp. 385-388; Ref. 33, p. 183). This has
consequences for the commonly made statement that tem-
peratures are higher on cloudy nights than on clear nights
because infrared radiation emitted by the Earth is “reflect-
ed” by the clouds. Although the observation is correct, this
explanation is not. The single-scattering albedo of cloud
droplets is quite high at visible and near-visible wave-
lengths, greater than 0.99999. But in the infrared it plunges
because of the infrared absorption bands of water. The
Earth emits radiation of all wavelengths, but most of it is
between about 8 and 12 gm. At these wavelengths, the sin-
gle-scattering albedo of typical cloud droplets is at most
about 0.8 (see Ref. 20, Table V), which seems high, but is
in fact quite low (see Fig. 7). As a consequence, clouds are
nearly black to radiation emitted by the Earth. If clouds
elevate nighttime temperatures, it is not because they re-
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flect infrared radiation, but rather that they emit more of it
than the clear night sky does.

A. Darkening of sand upon wetting

With Eq. (28) and Fig. 7 we can explain another com-
mon observation: the darkening of sand upon wetting.
Sand is usually an optically thick multiple-scattering medi-
um (i.e., it is so thick that the addition of another layer does
not sensibly change its appearance). When dry sand is wet-
ted, it becomes noticeably darker. At visible wavelengths,
water is very weakly absorbing, so increased absorption by
water is certainly not the reason for this. Grains in dry sand
are surrounded by air. But when wet (strictly speaking,
when the sand is saturated ), they are surrounded by water.
In going from air to water (or other liquids), the grains
scatter more toward the forward direction. Indeed, when
the refractive index of the grain is exactly that of the sur-
rounding liquid, scattering is entirely in the forward direc-
tion. Thus when a large grain is surrounded by a liquid
instead of by air, its asymmetry parameter g increases. As
the average degree of forwardness of scattering increases,
incident photons have to be scattered more times before
reemerging from the sand and are therefore exposed to a
greater probability of being absorbed. For more details
about this explanation of the darkening of sand and experi-
mental verification of it see Ref. 34.

While we are on the subject of sand, we can use Eq. (28)
to explain another observation. The asymmetry parameter
of very large particles does not depend strongly on their
size or on the wavelength. If the particles are weakly ab-
sorbing, their absorption cross section is proportional to
the product of the absorption coefficient « of the bulk par-
ent material and the particle volume (i.e., the cube of a
characteristic linear dimension ). But the extinction cross
section (sum of absorption and scattering cross sections) is
proportional to the square of ; hence 1 — @, is proportion-
alto ad. If we expand Eq. (28) in powers of Jad and retain
only the first term, we obtain

R=~1—-Cyad , (29)

where C is a wavelength-independent factor that depends
on, among other things, the asymmetry parameter. Thus
the smaller the grains, the closer the albedo is to 1. This can
be observed on a beach with sands that have been size segre-
gated by wind or water: The coarser sand is darker (see
Ref. 35 for a photograph). If there is not a beach nearby
you can verify the qualitative correctness of Eq. (29) by
smashing colored beer bottles into small bits. According to
Eq. (29), the smaller the grains, the higher the albedo. So if
you smash the bottles into very small bits, the resulting
heap of powdered glass will have a high albedo which will
not be noticeably wavelength dependent. But by selecting
sufficiently large glass particles (by sieving, for example),
the heap of powdered glass will be less bright and may even
display the color (although of lower spectral purity) of the
parent bottles.

B. Colors in snow

I mentioned in Sec. ITI D that snow is another common
multiple-scattering medium (for a good review of the opti-
cal properties of snow, see Ref. 36). In a recent popular
article,’” I found the following statement: “Snow is not
white; it simply reflects the light, which is—usually—
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white.” Rather than comment on this explanation, I shall
try to give a more satisfactory one. Ice grains in snow scat-
ter predominantly near the forward direction (ie., g is
close to 1). Incident photons that reemerge from a snow-
pack must therefore have been scattered many times. If
they are to survive many scatterings, the probability of ab-
sorption (1 — @,) must be small, which it is at visible
wavelengths. Visible light must be transmitted through
many meters of pure homogeneous ice to be appreciably
absorbed.*® Ice is intrinsically blue: It absorbs red light
much more than blue light. But 1/a for ice is of order me-
ters over the visible spectrum, whereas grain sizes are of
order millimeters. Thus the product ad for ice grains in
snow is very small, and as a consequence [see Eq. (29)] the
albedo of snow is high and does not vary appreciably over
the visible spectrum.

But this does not mean that snow does not exhibit colors.
Deep blues can be seen in crevasses, inice caves, and even in
holes in ordinary snow (see Ref. 40 and the cover of Ref. 41
for photographs of blue holes in snow). Raman*? attribut-
ed this blueness to scattering by molecules, an incorrect
explanation that is still extant,** although an essentially
correct explanation was given in 1886 by Waltheré
Spring.** Raman’s*? arguments apply only to ice of a trans-
parency much greater than that usually found in nature.
Molecular scattering in snow is overwhelmed by scattering
by ice grains. Moreover, if Raman’s explanation were cor-
rect, light transmitted in snow would be red, not blue. If K
[see Eqgs. (27) and (28) ] were independent of wavelength,
and 7 inversely proportional to the fourth power of the
wavelength, then the transmitted intensity would get red-
der with increasing depth into the snow. This is contrary to
what is observed.

The optical thickness of snow is to good approximation
independent of wavelength, from visible to infrared, be-
cause the extinction cross section of ice grains is nearly
constant in this range. This statement seems to contradict
the observation that sunlight transmitted into snow is blue.
Here is a good example of the great difference between
single and multiple scattering. For small optical thick-
nesses, multiple scattering is negligible, and all scattered
photons are lost from an incident beam. Of course, photons
can also be absorbed. It is the sum of scattering and absorp-
tion that is independent of wavelength. Multiple scattering
in snow is not negligible. Attenuation in snow will there-
fore be less than it would otherwise be (i.e., with no multi-
ple scattering) because photons scattered out of the direc-
tion of a beam can reappear in this direction. But it is only
those photons that are not absorbed that do so. Visible light
at the short wavelength end of the spectrum is less likely to
be absorbed by an ice grain than light at the long wave-
length end. Hence, it is only because of nonselective multi-
ple scattering in a selectively absorbing medium that we see
blue light in snow holes. Moreover, the depth to which
white light must be transmitted in snow to become blue is
considerably less, a factor of about 50, than it would have to
be transmitted in homogeneous ice: Multiple scattering in
snow increases the total path length a photon travels
through ice before reaching a given depth. Although ab-
sorption by liquid water over the visible spectrum is quite
similar to that by ice, we do not see vivid blue light beneath
clouds because their optical thicknesses are smaller than
those of deep snow and because cloud droplets are much
smaller than ice grains.

As a final example, to inspire confidence in the simple-
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Fig. 8. Albedo of optically thick snow, calculated using the simple two-
stream theory of radiative transfer, for various grain diameters: (——)
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two stream theory, I have used Eq. (28) to compute the
albedo of snow over most of the solar spectrum. The grains
are taken to be spheres, all with the same diameter d, and
with an asymmetry parameter of 0.94. For the single-scat-
tering albedo, I have wused the approximation
@, =1 — Q,,./2, where the absorption efficiency Q,,. (ab-
sorption cross section normalized by geometrical cross sec-
tion) is obtained from Ref. 45. The refractive index of ice is
taken to be 1.3 over the solar spectrum; its absorption coef-
ficient is obtained from the compilation by Warren.* The
results are shown in Fig. 8. Despite all these simplifica-
tions, the calculated albedo agrees well with that measured
by O’Brien and Munis*® (see their Fig. 2). All the wiggles
and bumps, corresponding to the absorption bands of bulk
ice, are in their proper positions. Even the magnitude of the
albedo is approximately correct, although theory tends to
overestimate the visible albedo. The reason for this is prob-
ably contamination.*” Absorption of visible light by carbo-
naceous materials (lumped under the heading of “soot’) is
more than a million times greater than absorption by ice.
As a consequence, a few parts per million of soot in snow
can markedly reduce its visible albedo. In the infrared,
however, ice is so strongly absorbing that an absorbing con-
taminant in snow does not change its albedo.

Figure 8 illustrates a statement I make to get my students
scratching their heads: Snow is the whitest natural sub-
stance on our planet; it is also the blackest. At visible wave-
lengths, the albedo of clean, fine-grained Antarctic snow*®
is as high as 0.97. But in the middle infrared, the albedo of
snow is so low that it is nearly a perfect blackbody.

V. CONCLUDING REMARKS

Just as it is not necessary to begin with the Maxwell
equations to understand coherent scattering (in the guise
of reflection and refraction by homogeneous, optically
smooth media), it is not necessary to begin with the exact
equation of radiative transfer to understand incoherent
scattering. I have approached multiple (incoherent) scat-
tering by way of a simple two-stream theory. Its major de-
fect is that it suppresses the full directionality of the radi-
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ation field: 27 Sr are collapsed into a single direction.
Despite this simplification, the results of the two-stream
theory are applicable to a great many common observa-
tions, ones which cannot be understood by single-scatter-
ing arguments. My approach has been to first derive math-
ematical expressions, then apply them to observations, and
finally to give a physical interpretation. Much of the ter-
minology introduced in this simple context—single-scat-
tering albedo, asymmetry parameter, optical depth, optical
thickness, etc.—appears in more advanced treatises, so the
way has been paved for further study by those whose appe-
tites have been whetted. Some of the ideas in this paper, and
simple ways to demonstrate them, are discussed at an ele-
mentary level (i.e., without mathematics) elsewhere.>>**°
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