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Sound propagation in gas-filled capillary-tube-type porous media was investigated. The 
capillary tubes were taken to be nominally straight with very small pores in the walls of the 
capillary tubes. The complex wave number and the characteristic impedance of such media 
were evaluated. Application to ceramic samples having capillary pores with square cross 
sections and porous walls is developed as an explanation for the anomalous tortuosity factor 
previously inferred for this material. Specific acoustic impedance (SAI) measurements were 
performed for rigid-backed square pore ceramic media having finite wall porosity. It is shown 
that phase velocity is decreased, attenuation is increased, and characteristic impedance is 
decreased by finite wall porosity. SAI measurements were also performed after the wall pores 
were filled with water. These measurements agree favorably with the porous wall and 
nonporous wall theories, respectively. This work provides a model for the acoustical properties 
of gas-filled monolithic catalyst supports of which the square pore ceramic media is an 
example. 

PACS numbers: 43.28.Fp, 43.50.Vt, 43.20.Mv 

INTRODUCTION 

Theory •'2 and experiments t were recently reported for 
sound propagation in porous media consisting of straight 
capillary tubes having square cross sections. The experimen- 
tal work was aimed at testing the efficacy of first-principle 
models for predicting the acoustical properties of porous me- 
dia with well-defined geometries. The measured complex 
wave number t was approximately 10% larger than the 
values predicted from theory assuming nonporous walls. 
However, the ceramic porous sample used actually has walls 
that are porous, as indicated schematically in Fig. 1 (a) and 
(b). A qualitative explanation for the discrepancy was that 
the finite porosity of the ceramic square pore wall should 
increase the bulk compressibility of air in the porous media 
and hence increase the complex wave number. This de- 
ereases the phase velocity and increases the attenuation, as 
was observed in the measurements. Effects of wall pores on 
propagation in porous media were also qualitatively dis- 
cussed earlier. 3 

In this paper, the effects of finite wall porosity are in- 
cluded in the theory for sound propagation in a porous me- 
dia consisting of nominally straight capillary tubes with 
much smaller pores in the capillary tube walls. The theory is 
cast in a sufficiently general form that it is useful for capillary 
tubes having geometries other than squares. Specific acous- 
tic impedance (SAI) measurements of a rigid-backed cera- 
mic sample and a previous measurement of the complex 
wave number t compare favorably with the porous-wall por- 
ous media theory. Wall pores were filled with water and the 
SAI measurements were repeated. These measurements 

a) This work was presented at the 120th Meeting of the Acoustical Society of 
America [J. Acoust. See. Am. Suppl. 1 88, S143 (1990)]. 

agree favorably with nonporous wall theory. The theory 
shows that the complex wave number is increased and the 
characteristic impedance is decreased on account of finite 
wall porosity. 

Finite wall impedance concepts have been used in relat- 
ed work. For a sufficiently wide tube, absorption of the plane 
wave mode can be accounted for using the expression for 
boundary layer impedance as a boundary condition at the 
tube wall. 4 Similarly, sound absorption in ducts with ab- 
sorbing liners at the duct wall can be modeled using the liner 
impedance as a boundary condition? These concepts also 
find use in bore hole measurements in geophysics. 6 

The ceramics used in this investigation are an example 
of a monolithic catalyst support. 7 Several manufacturers use 
these ceramics in automobile catalytic converters. Physical 
properties, such as the ability to hold coatings and low ther- 
mal conductivity, can be obtained by adjusting the ceramic 
wall porosity. 7 A combustible material that burns out dur- 
ing the final sintering is added to the raw ceramic mixture to 
increase the porosity for some applications. 7 The theory de- 
veloped here provides a model for the low-frequency acous- 
tical properties of gas-filled monolithic catalyst supports. 
These ceramics may be useful as low-frequency sound ab- 
sorbers. They may also be useful in thermoacoustic heat en- 
gines due to their low thermal conductivity, regular ge- 
ometry, wide spread availability, and low cost. 

I. PROPAGATION IN POROUS WALL POROUS MEDIA 

A. Assumptions 

In ideal acoustics an often used approximation is that 
sound wave propagation is adiabatic and that the fluid is 
inviscid. At boundaries it is sufficient to assume continuity 
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of pressure and the normal component of particle velocity. 
Ideal acoustics boundary conditions are not sufficient to cleo 
scribe sound propagation in porous media for which the so- 
lid and fluid volumes are intermingled and are on the same 
order. Account must be taken of momentum and energy 
transport phenomena, viscosity and thermal conductivity, 
which occur as a result of velocity and temperature gra- 
dients. In viscous fluids it is usually a good assumption that 
the total particle velocity is zero at a rigid stationary boun- 
dary. For boundaries such as solid-gas interfaces compres- 
sion and expansion of gas can result in transport of heat to 
and from the solid for parcels of gas sufficiently close to the 
walls. At boundaries gas and solid temperatures are assumed 
to be the same since in solids the heat capacity is usually 
much greater than that of the gas. Any local heating of the 
solid due to the gas is diffused throughout the solid since it is 
generally a much better heat conductor than the gas. 

Dimensionless numbers indicate different regimes of 
disturbances in porous media. Denote by Po, cp, r/, and • the 
gas properties of ambient density, constant pressure heat ca- 
pacity per unit mass, viscosity, and thermal conductivity. A 
measure of the relative magnitude of viscous and thermal 
diffusion in the gas is given by the Prandtl number, 
Npr = •lc•,/tc. Gas viscous and thermal penetration depths 
for oscillations of radian frequency o• are $• 
and 6• = (2•C/po(aCv) •/2 x /nr•/2 respectively. Denote 
by R a characteristic transverse pore dimension, e.g., the 
pore radius for circular pores. A dimensionless shear wave 
number can be defined as/[ = 2•/2R/õ,l = R (Po cO/•l) •/•. Si- 
milarly defined for thermal diffusion is a thermal distur- 
bance number Ar 2•/•R /6, = R(po•OCp/•c) 
For A• 1, the magnitude of particle velocity in a pore is 
much less than that predicted by (inviscid) ideal acoustics 
and has nearly a quadratic dependence on the transverse 
coordinates as does de flow through a capillary tube (Poi- 
seuille flow). For/[>) 1, the magnitude of particle velocity 
closely matches that predicted by ideal acoustics except in a 
thin boundary layer of thickness 6• in which particle velo- 
city changes rapidly to zero at the pore wall. For/t r • 1 the 
gas temperature is the same as the wall temperature and 
density changes in the gas occur isothermally rather than 
adiabatically. For/lr• 1 density changes are adiabatic ex- 
cept in the thin boundary layer 6• surrounding the pore wall 
over which density changes go from adiabatic to isothermal. 
A good measure of the characteristic transverse pore dimen- 
sion is R = twice the transverse pore area/pore perimeter. 
For example, the characteristic dimension is R = a for cir- 
cular pores of radius a and for square pores of semiwidth a. 
This definition of R is twice the hydraulic radius. 

Figure 1 (a) and (b) represent the model for porous wall 
porous media. Darkened regions in these figures are the gas- 
filled portions of the media and the surrounding matrix is 
taken to be rigid. Plane waves are taken to be propagating in 
the z direction. Two types of pores are to be distinguished. 
The main pores are shown to be square in cross section, 
though this is not necessary for the theory developed below. 
The walls of the main pores have pores or holes of much 
smaller radii in them, and the wall pores are of average 
length d•,, as shown in Fig. 1 (a). Main pores are not con- 

I--dw-I 

lb) 

FIG. I. (a) Single main pore with wall pores of length do. (b) Arrangement 
of main pores in the porous sample model. Wall pores are not taken to con- 
nect adjacent main pores. Air filled regions in (a) and (b) are dark. 

neeted by wall pores, as indicated in Fig. 1 (b). Transverse 
dimensions in the main pore are given by coordinates (x,y), 
as indicated in Fig. 1 (a). 

The central assumptions are now given concerning os- 
ciliatory motion and condensation of gas in the wall pores. 
At the frequencies considered, particle velocity in the wall 
pores is much less than it would be for ideal acoustics as a 
result of gas viscosity and the small radii of wall pores. Con- 
densation of gas in the wall pores is taken to occur isother- 
mally at the same temperature as the solid matrix of the 
porous media. In terms of the dimensionless parameters, 
these assumptions are •.•, < 1 and/fro, < 1, where subscript to 
refers to wall pores. 

The central assumption concerning pressure in the main 
pore is that it is only a function of the longitudinal coordin- 
ate z, not the transverse coordinates? One justification of 
this assumption is that frequencies considered are much less 
than the cutoff frequency for radial modes in the main pore. 
This is the standard assumption for the pressure in nonpor- 
ous wall porous media theory? A second argument for this 
assumption is that the wall impedance is much greater than 
the characteristic impedance in the main pore and the pore 
diameter is much less than the acoustic wavelength. 
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The useful range of the porous-wall theory can be stated 
most generally in terms of the dimensionless numbers relat- 
ing pore radius and the frequency-dependent viscous pene- 
tration depth. This model should be useful for porous media 
with main pores such that 2 > 1 and wall pores such that 
A w < 1. These criteria were not derived from more general 
theory but appear to be consistent with the assumptions 
made above. In the experiments discussed below 4 < 2 < 18 
and 2w was estimated to be in the range 0<2• < 1.2. The 
frequencies considered were in the range 75-1300 Hz. Wall 
pore diameters ranged up to • 100 pm, and the main pore 
width was 1.54 mm. Further discussion is given in Sec. III. 

B. Analysis for porous wall porous media 

Consequences of the assumptions given above on the 
linear acoustic equations in porous wall porous media are 
now developed. An exp ( -- imt) sign convention will be used 
for constant frequency oscillations. In the frequency do- 
main, linear acoustic quantities in a single main pore are 
transverse and longitudinal components of particle velocity, 
v(x,y,z) = v• (x,y,z) + v• (x,y,z)•, pressure, p(z), density, 
p(x,y,z), and temperature, T(x,y,z). Ambient quantities are 
density, Po, temperature, To, and pressure, Po. The trans- 
verse velocity has been computed for circular pores and non- 
porous walls by Tijdeman. 4o 

A general result is established first. In the geometry of a 
single main pore in Fig. 1 (a), the continuity equation is 

Jv• ( x,y,z ) 
- imp(x,y,z) +Po +poV•.vT(x,y,z) = O, 

c•z 
(1) 

where V, = J/c•x•-4-c•/c•y.• is the transverse gradient 
operator. Averaging Eq. (1) over the cross section of an 
arbitrarily shaped main pore, as shown in Fig. 2, 

CROSS SECTION OF 

ARBITRARILY SHAPED 

MAIN PORE 

FIG. 2. Arbitrarily shaped cross section of a general main pore having peri- 
meter $ and area A. The outward normal is n(x,y,z) and %(x,y,z) is the 
tangential component of particle velocity. For main pores having square 
cross sections, as in Fig. 1 (a), the cross section would be a square. Wall 
pores (not shown) are assumed to skirt the main pore. 

dv,(z) +Po f V.vT(x,y,z)dxdy = O, 
(2) 

where p(z) = .4 •œp(x,y,z)dx dy and v• (z) = A - 
X (x,y,z)dx dy are the cross-sectionally averaged acoustic 
density and z component of particle velocity for a main pore 
of cross-sectional area A, e.g., the square area in Fig. 1 (a). 
Application to Eq. (2) of the divergence theorem in the 
(x,y) plane gives 

dvz(z) -- imp(z) + Po •z + n(x,y).v•(x,y,z)dS = O, 
(3) 

with S being the perimeter of a main pore having outward 
unit normal n and dS an element of perimeter. In the stan- 
dard approach to capillary-tube-based porous models, the 
main pore wall is both rigid and nonporous and the boun- 
dary condition v• = 0 at the pore wall significantly simpli- 
fies the pore-averaged continuity equation to 
- imp(z) +Po dvz(z)/dz = O. 

According to Eq. (3) average gas density in the main 
pore changes in time due to compression of the gas and as a 
result of mass flux Pon (x,y).% (x,y,z) into the pore wall. A 
reasonable assumption is that the porous wall radius of cur- 
vature in a transverse plane is much greater than typical wall 
pore diameters. Under this assumption the porous wall can 
be taken locally to be a flat surface having a specific acoustic 
impedance Z,o. In this averaged sense continuity of the nor- 
mal component ofvT (Fig. 2 shows the normal) at the main- 
pore porous-wall boundary is taken to be 

n(x,y).% (x,y,z) = p(z)/Z•o. (4) 

Here p ( z ) / Zw is the longitudinal particle velocity in the wall 
pores evaluated at the interface of the main pore and en- 
trance to the wall pores. As discussed above, p(z) is taken to 
be constant in a given cross section of a main pore. Use of the 
boundary condition, Eq. (4), in the continuity equation, Eq. 
(3), gives 

dvz (z) pop(Z) S 

-- imp(z) +Po • + Z-•--- .4 -- O, (5) 
where S is the perimeter of the arbitrarily shaped main pore, 
e.g., the square in Fig. l(a). 

Other relations among the acoustic quantities are pro- 
vided by momentum, state, and heat flow equations. The z 
component of the momentum equation in a single main pore 
is • 

- impov•(x,y,z) - 
alp(z) 

dz 
-- + •lV2•vz(x,y,z). (6) 

The boundary condition for Eq. (6) is v• (x,y,z) = 0 for x 
and y on the nominal location of the main pore boundary. 
This boundary condition assumes that the transverseparticle 
velocity in the wallpores is zero since wall pore diameters are 
much less than the viscous penetration depth. The solution 
of Eq. (6), when averaged over the cross section of the main 
pore, as was done above for the continuity equation, is writ- 
ten symbolically as • 
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kOpoV, (z) = F(.•) dp(z) (7) 
dz 

where F(/t) is a complex pore-geometry-dependent function 
that defines a complex density pelF(A) for gas in the main 
pore. Recall that/t = R(pora/•l)•/•, where R = 22t/S. For 
main pores having rectangular cross sections of semiwidths 
a and b, R = 2ab/(a + b), 

Y,•, (/•) = 1 + (irr•/A 2) [ (b 2m2 + a2n2)/(a + b)2], 
(8) 

and the function F(A) is •a 

F(A) = 64 1 rr 4 ,•.•oad m2n2 Y,,, (A) (9) 
The odd integers m and n in Eq. (9) range from 1 to •. Note 
that )t and hence F(/•) is a function ofa/b for rectangular 
pores. 

Density changes in the wall pores are taken to occur 
isothermally, as discussed above. Excess temperature goes to 
zero at the nominal location of the main pore boundary, 
which is the usual boundary condition. The heat equation 
and equation of state can be combined to obtain an expres- 
sion for the excess density in the main pore.• Averaging the 
excess density over the pore cross section gives • 

p(z) = {[y-- (y-- 1)F(Ar) ]/ca}p(z), (10) 
where c is the adiabatic sound speed, y is the ratio of specific 
heats, and F()[ r) is given by Eq. (9) for rectangular pores 
and argument )It = N •v•,•. For wide main pores such that 
Ar • oo, F(J. r) -, 1 so that compressions are adiabatic and 
p(z) =p(z)/cL For narrow main pores such that 
F(,•r)--,0 so that compressions are isothermal and 
p(z) = p(z)/(ca/y). Use ofEq. (10) in the averaged contin- 
uity equation, Eq. (5), gives 

_ ira( ?-- (r- 1)F(,•r) 2ipo •p(z) c a + RraZ•, ] 

dv z (z) 
+po •=0, (11) 

dz 

where R = 2d/S was used. 

The model is shown in Fig. 1 (b) for a bulk porous media 
consisting of N main pores per unit area, each having cross- 
sectional area .4. The area .4 and porosity 11 - N A are to be 
measured, assuming that no wall pores are present. For com- 
pleteness, allow each main pore to also have a tortuosity q. In 
the present context, q allows for the possibility of a gentle 
longitudinal curvature of each main pore, or a tilt angle 0 of 
the main pore axis for which q = !/cos O. Bulk acoustical 
equations for porous media are obtained by using 
lZz• (z) = llv• (z)/q and by replacing dz with q dz. • Here 
V,• (z) is a bulk particle velocity averaged over unit cross 
section of porous sample. Resulting bulk equations are from 
Eq. (7), 

q Va,(z) =F(,•) alp(z) (12) lope • q dz ' 
and from Eq. ( 11 ), 

_ira(y-(Y•))F()[r) . 2ipo • • R---•JP(z) 
+Po q dV•,(z•)--0. (13) 

fl qdz 
Multiplying Eq. ( 13 ) by (ira), taking d/qdz of Eq. (12), and 
eliminating V• (z) from the resulting equations gives an 
equation for pressure waves of constant frequency, 

d2P(Z) -3 ra2 y-- (y-- I)F(Ar) 
dz • (c/q) • F(,•) 

y-- (y-- 1)F(gr) ra 

where •, = Z•,/poc is the nomaliz• wall s•ific acoustic 
impedance. 

•e •mplex wave numar and characteristic •- 
dan• of •rous wall porous m•ia are obtained from •. 
(14) and •. (12). Assumingp • exp(ikz), •. { 14) yields 
a dis•rsion relation for the complex wave number k, 

k = • k•,•, (15) 
where 

k•v = (r- 1)F(Ar) ]/F(A), (16) 
is the propagation constant for nonporous main-pore walls 
and 

•1 +c/[r-- (7-- 1)F(Ar)](i/mR•), (17) 
where a binomial expansion for the square root was applied 
because • • 1. From Eq. (12) the normalized characteristic 
impeduce • = Z/poC of the material is 

where 

•.. = 1 q • , (•9) 
F(1) 'a • •- (•-- 1)F(AT) 

is tbe impedance for nonporous m•n-pore walls • and 

• -'•1 --c/[r-- (y-- 1)F(Ar)](i/mg•). (20) 
Recall that • is the nomaliz• wall specific acoustic impe- 
dance. 

The m•el illustrat• in Fig. 1 (a) and (b) assum• wall 
pores are of length d• •d teminate in the pore wall. A 
reasonable model for w•l imp•ce is a d•d-back• layer 
model with • = i• cot (k•d•) •i•/(k•d•), where the 
cotangent approximation applies when k•d• • 1, k• is the 
propagation consrot for the wall pores, and • is the nor- 
m•iz• characteristic impedan• of•e wall. An impeduce 
m•el for sufficiently low fr•uency •d wall por• with 

- I• • geometries such that g• < 1 hm k• = q•o(8ty) /(c •) 
and • = q• (8i/Z) •/•/(•A• ), where q• and g• are the 
to•uosity of wall •res and the porosity of the wall. t• Wall 
porosity • is defin• m the o•n volume in the walls divid- 
ed by the total volume of the walls. •mbining the• expr•- 
signs •ves a wall-pore norm•iz• sp•ific acoustic im•- 
d• that is inde•ndent of A•, 

• mic/my•d•. (21) 

U• of•. (21) in •. (17) giv• 
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r fi•,d•, 
y-- (y-- 1)F(,t r) R 

= 1 -t y fir --fi (22) 
y- (y- 1)F(A r) 2fi 

where in the second form, the total porosity fl r is the total 
open volume (wall-pore volume plus main pore volume) 
divided the total sample volume. Equation (22) was ob- 
tained using the relation 

fir = fi(l + 2fi•,d•,/R). (23) 

The total porosity fir can be obtained from Eq. (23) by 
measuring fi and R, and by optimizing agreement between 
theory and experiment to obtain fi•o and d•o. This is dis- 
cussed further in Sec. III. 

For main pores large enough that Ar>>l so that 
F(Ar) = 1, •> 1 is a real quantity. Consequences of•> I 
are seen in F_q. (15) and the definition k 
where cph is the phase velocity and ct is the attenuation con- 
stant. Attenuation is increased by •> 1 and phase velocity 
decreased, and by Eq. (18) the characteristic impedance is 
decreased. The factor y/[ y -- ( y -- 1 ) F( A r) ] may be attri- 
buted to the difference in compressibility of gas in the main 
pore and much smaller wall pores. Acoustical methods for 
determining the ratio (fir -- fi)/fl occurring in Eq. (22) 
may be of interest in nondestructive evaluation of materials. 

The normalized specific acoustic impedance •rb of a ri- 
gid-backed square pore sample is 

•,• = i• cot(kL), (24) 

where L is its length. Calculations of •r• will be compared 
with measurements in Sec. III. It is noteworthy that this 
measurement is sensitive to both the characteristic impe- 
dance •' and the complex wave number k of the material 
when absorption over length 2L is not severe. 

II. SPECIFIC ACOUSTIC IMPEDANCE MEASUREMENTS 

The ceramic porous material has straight tubes with 
square cross sections, as shown schematically in Fig. 3. The 

side of the ceramic facing the impedance tube was flush 
mounted into an aluminum disk of thickness 1.27 cm. An- 

other solid aluminum disk of the same thickness had a hole 

of depth 0.32 cm and diameter of 14.6 cm machined into it so 
that the ceramic could be attached. The ceramic and alu- 

minum pieces were attached using epoxy. The solid alu- 
minum disk acts as a rigid termination for the sample. An O 
ring was machined into the open disk to form a seal with the 
impedance tube. Threaded rod not shown in Fig. 3 was bolt- 
ed between the aluminum pieces to add structural support. 
The outer ceramic surface was sealed against leaks by cover- 
ing it with polyurethane. 

Specific acoustic impedance (SAI) measurements were 
made on a square pore ceramic sample having a nominal cell 
density of C=200 pores/in. 2, average square pore 
semiwidth a of 0.768 mm +_ 0.01 mm, and length L of 49.5 
cm. Porosity associated with main pores using 
fi = C(2a) 2 ---- 73%. This value of porosity was computed 
assuming nonporous walls, as dictated by the theory in Sec. 
I. Wall thickness was •0.27 mm. The value a ---- 0.77 mm 

was used in the calculations. The uncertainty in a was com- 
puted from the standard error of 25 measurements. 

After SAI measurements were made on the dry, porous 
wall sample, the ceramic was flooded with water. Strong 
molecular attraction between water molecules and the cera- 

mic held water in the small volumes of the wall pores. How- 
ever, water in the main pores was easily removed by shaking 
the sample. Thus a three phase (water, ceramic, and air) 
sample was produced. Because of the huge impedance mis- 
match though, the combination of wall-pore water and cera- 
mic sample wall are considered a rigid matrix. This combin- 
ation gave us an ideal porous sample consisting of straight, 
square-pore capillaries with nonporous walls. SAI measure- 
ments were also made on this three-phase sample. 

Figure 4 shows a representative optical microscope pho- 
tograph from several that were taken of the pore walls. 

I•- L •1 O-RING 

ALUMINUM DISK ALUMINUM DISK 
RIGID TERMINATION FLANGE 

FIG. 3. Arrangement of ceramic sample and aluminum support disks. 
Threaded rod standoffs were used between the aluminum disks to add struc- 

tural support. Impedance measurements were made with the ceramic sam- 
ple attached to the impedance tube in Fig. 5. 

lmm 
! I 

FIG. 4. Representative optical microscope photograph of the porous cera- 
mic wall. 
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Clearly the ceramic sample has finite wall porosity. The 
larger pore diameters were estimated to be 100 pro. The in- 
tcrior wall pore volume is roughly spherically shaped, 
though the walls are not smooth. Wall pores with small dia- 
meters in Fig. 4 often open to larger diameter cavities in the 
ceramic walls. Wall porosity was estimated to be/10, = 49% 
by maximizing agreement between the experimental impe- 
dance measurement and the theoretical expression, which is 
a function of/10,. An estimate of do, = 100pm, the depth of 
wall pores, as shown schematically in Fig. 1 (a), was made 
using a profileometer. The estimated values of/lo, and do, 
will be used in Sec. III to compute the total sample porosity 
from use of Eq. (23). It appeared that wall pores do not 
connect by air adjacent main pores. 

An impedance tube shown schematically in Fig. 5 was 
used to measure the specific acoustic impedance of a rigid- 
backed ceramic sample shown schematically in Fig. 3. Im- 
pedance tube design criteria and theory of operation are de- 
scribed elsewhere. •2,•3 A dynamic signal analyzer was used 
in a swept sine mode to drive a power amplifier that was 
connected to the Altec driver. Denote by H u the transfer 
function between microphones M 1 and M2 in Fig. 5. The 
analyzer was also used to measure H.. The frequency range 
of interest was 75-1300 Hz, and the cutoff frequency for 
radial modes in the tube was approximately 1375 Hz. The 
analyzer was interfaced with a minicomputer to download 
H. for the impedance calculation. A transfer function H •i is 
measured and the measurement is repeated with the micro- 
phones reversed, obtaining H •. Since the transfer function 
used in the calculation is H. = ( H •/H •. ) •/2 the frequency 
response of each microphone cancels so that one need not be 
overly concerned with the microphone frequency response 
or calibration. 

III. DISCUSSION OF EXPERIMENTAL 
AND CALCULATED COMPLEX WAVE NUMBER 

AND SPECIFIC ACOUSTIC IMPEDANCE 

The complex wave number for C = 200 pores/in. 2 ce- 
ramic samples was previously measured using a time domain 
technique. Experimental results are shown in Fig. 6(a} and 
(b) for phase velocity and attenuation constant. Also shown 
are theoretical results for porous-wall porous media theory 
[Eqs. ( 15 ) and (22) ] and nonporous-wall theory [Eq. 
(16) ]. Porous-wall theory results agree much more favor- 
ably with experimental points than the nonporous-wall theo- 
ry. Porous-wall theory underestimates the attenuation con- 

]-30 cm410 cm•= 80 cm •I CONE 

I I "HORALTNF 
M1 M2 

IMPEDANCE TUBE: ID = 14.6 CM 
C 

SAMPLE COMPRESSIONAL 
END DRIVER 

FIG. 5. Impedance tube geometry. 
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FIG. 6. (a) Attenuation constant and ( b ) phase velocity measurements and 
theory. The solid symbols are experimental results for ceramic square pore 
samples. Error bars were estimated to be twice the symbol size in (a) and a 
representative error bar is shown in (b). Solid lines and broken lines are 
porous-wall and nonporous-wall porous-media theory. 

stant though, particularly at higher frequencies. In previous 
work it was noted that use of an anomalous tortuosity 
q = 1.1 [in the nonporous-wall theory Eq. (16) ] was neces- 
sary to obtain satisfactory agreement among theoretical and 
measured values of the complex wave number. This value of 
tortuosity is anomalous since porous media consisting of 
straight, rigid, nonporous capillary tubes, which was the 
model being used, has q = 1. The slightly frequency-depen- 
dent complex factor computed from Eq. (22) is •= 1.1. This 
theoretical justification for multiplying the complex wave 
number by a nonunity factor 2, even though the capillary 
tubes are straight, is a main result of this paper. 

Measured and calculated specific acoustic impedance 
are shown in Fig. 7, with the real part in Fig. 7(a) and the 
imaginary part in Fig. 7 (b). The theoretical expression for a 
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FIG. 7. (a) Real and (b) imaginary specific acoustic impedance measure- 
ments and theory. Experimental measurements are given by small squares, 
which nearly form a continuous curve. Measurements with the wall pores 
filled with water are marked with large, solid squares. These measurements 
agree favorably with the nonporous-wall theory given by the dashed lines. 
Measurements and theory for porous walls are marked with open squares 
and solid lines, respectively. 

rigid-backed sample is given by Eq. (24). Impedance was 
normalized by the characteristic impedance of air. Con- 
structive and destructive interference of downgoing and up- 
going waves in the ceramic sample results in the obvious 
structure on the impedance curves. Nonporous-wall theory 
was computed from the use of Eq. (19), and porous-wall 
theory from Eq. (18) and Eq. (22). With the wall pores 
filled with water, SAI measurements agree favorably with 
nonporous-wall theory. When the wall pores are open SAI 
measurements agree favorably with porous wall theory. The 
location of peaks and minima agree favorably; however, the 
computed impedance is less than the measured impedance 
near minima of the real part. Part of this discrepancy may be 
attributed to boundary layer absorption on the rigid termin- 

ation of the ceramic sample: This is not accounted for in Eq. 
(24). Porous-wall theory gives an impedance greater than 
the measured impedance for higher frequencies. This is con- 
sistent with phase velocity and attenuation measurements 
shown in Fig. 6, since the frequency of impedance maxima 
and minima is governed primarily by the phase velocity and 
the impedance magnitude is governed by the attenuation 
constant. The assumptions made in Sec. I A for developing 
the porous-wall porous-media theory are less valid for 
higher frequencies, since A•, • 1.2. 

Wall porosity •t w was used as an adjustable parameter 
in Eq. (22) to obtain the theoretical wall porosity SAI 
curves in Fig. 7(a) and (b). Champoux and Stinson mea- 
sured, '4 using an air-based system, '• the total porosity •r 
of a ceramic sample of the same type used in our measure- 
ments. Use of Eq. (23) gives •r = 0.82, which is in accepta- 
ble agreement with the value l• r = 0.87 -I- 0.05 determined 
by Champoux and Stinson. 

In previous work, we referred to the effects of finite wall 
porosity as an "anomalous tortuosity factor." This notion is 
incorrect, for by Eq. (19), the characteristic impedance is 
proportional to tortuosity q. Thus characteristic impedance 
should increase if finite wall porosity simply caused the tor- 
tuosity to increase. Finite wall porosity increases the bulk 
compressibility of gas in the pores. Since the complex wave 
number (characteristic impedance) are proportional (in- 
versely proportional) to the square root of compressibility, 
they increase (decrease) on account of finite wall porosity, 
as shown quantitatively in Eq. (15) [Eq. (18) ]. 

IV. CONCLUSION 

A theory has been developed for propagation in capil- 
lary-tube-type porous media in which the capillary tubes 
have small pores in the walls. The wall pores were modeled 
as a thin-layered impedance at the main pore wall. The wall 
impedance was taken to be reactive with the reactance due to 
small wall pores. Phase velocity is decreased, attenuation is 
increased, and characteristic impedance is decreased on ac- 
count of finite wall porosity. Specific acoustic impedance 
measurements on a ceramic sample having both porous and 
nonporous walls agree favorably with the calculated values 
for these two cases. This model may be useful for sound 
propagation in soils having large cracks and for evaluating 
the walls of tubes that are susceptible to damage by pitting. 
This work offers an explanation for the anomalous tortuo- 
sity factor, which was used previously' for the square pore 
ceramic samples. 
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