
Monte Carlo Model Project

AOS 640
Prof. Petty

due at end of semester

1 Objective

Implement a Monte Carlo model to simulate shortwave radiative transfer in a
homogeneous, plane-parallel cloud layer. Validate it against “exact” methods
for prototype cases. Perform numerical experiments designed to lend insight
into radiative processes involving scattering.

2 Background

There are many very different ways to numerically solve the radiative transfer
equation (RTE) for monochromatic radiation in a scattering medium. One
of the simplest and most flexible is the so-called Monte Carlo model, which
is nothing more than a brute-force simulation of the random trajectories of
individual photons. Basically, a photon is released from a specified point in
a specified direction, and a random number generator is utilized to determine
how far the photon will travel before encountering an extinction event. A second
random number determines whether the photon is absorbed or scattered. If it
is scattered, two more random numbers determine the direction into which it
is scattered. It then proceeds to its next extinction event (again determined
by a random number), and the process is repeated until the photon is either
absorbed or else it emerges from the top or bottom of the cloud layer to be
counted by a “virtual detector”.

The Monte Carlo method is fairly simple to understand, simple to implement,
and it can be used for any imaginable cloud geometry. Properties of the radia-
tion field can be obtained at any desired point in the model domain.

The principal drawback to random (or stochastic) methods like Monte Carlo
is that one must accumulate statistics for a large number of photons in order
to derive intensities that are of high precision. This used to mean enormous
computing times for even moderate precision. Nowadays, computers are fast
enough that Monte Carlo methods can be used for most problems (if desired)
with good success, even if it is not necessarily the most efficient method for
some geometries.
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3 Project Description

Your assignment is to implement a Monte Carlo radiative transfer code in or-
der to compute the reflected and transmitted intensities and fluxes associated
with an externally illuminated cloud layer. To keep the problem simple, we
will assume a plane-parallel cloud layer with specified total optical depth τ .
The single-scatter albedo ω̃ will be assumed constant throughout the cloud,
and the scattering phase function p(Θ) will be modeled via the widely used
Henyey-Greenstein analytic phase function (see below). Thermal emission will
be ignored. The incident illumination will be from a single direction specified as
a solar zenith angle θ0 and azimuth φ0 = 0. Discrete bins of solid angle will be
used to “capture” photons emerging from the bottom or top of the cloud layer,
and the count of detected photons will be utilized to compute and plot the an-
gular distribution of (relative) intensity, as well as to compute total upwelling
and downwelling reflectance and transmittances.

3.1 Deliverables

a. Flow diagram of model. I strongly recommend that you work out the
overall logic of the program BEFORE you start writing actual program code!

b. Printout of complete model source code. C or Fortran is preferred
(because I can supply canned routines in those languages); other languages
acceptable if you’re willing to translate what I give you. Use small font, double
columns, if possible, and be sure to comment liberally.

c. Numerical results (in tabular form) of the following quantities. Use
columns for variables, rows for cases. Details of requested cases will be provided
below.

1) Direct transmittance (from Monte Carlo results)
2) Direct transmittance (computed from τ)
3) Diffuse transmittance
4) Cloud-top albedo
5) In-cloud absorption
6) Optional (worth 10% bonus): For all cases, tabulations of
reflected intensity and diffuse transmitted intensity. Use format
similar to the test cases I am providing. Use four increments of
µ and eight increments of φ. Try to avoid wasting paper by
printing as many tabulations as possible together on each page and/or
by using a small font.

d. Cases

For at least the first couple of cases below, experiment to determine the number
of photons required for a satisfactory simulation. Vary the number by factors of
10 to see what happens, starting with a reasonably small number, like 1000. Try
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to find a number that yields good results without requiring excessive computer
time (be sure not to exceed about two billion, as this will almost certainly lead
to integer overflow on most systems).

Case θ0 τ� ω̃ g
1 0 16 1.000 0.0
2 60 16 1.000 0.0
3 60 0.1 1.000 0.85
4 60 1 1.000 0.85
5 60 4 1.000 0.85
6 60 16 1.000 0.85
7 60 64 1.000 0.85
8 60 0.1 0.999 0.85
9 60 1 0.999 0.85
10 60 4 0.999 0.85
11 60 16 0.999 0.85
12 60 64 0.999 0.85
13 60 0.1 0.900 0.85
14 60 1 0.900 0.85
15 60 4 0.900 0.85
16 60 16 0.900 0.85
17 60 64 0.900 0.85
18 85 16 1.000 0.85

e. Writeup For your writeup, answer the following questions:

1. What role does the number of photons play in your results? How can
you tell whether you have used “enough” photons for a given simulation? For
example what property(s) do you expect your tabulated intensities etc. to
exhibit? How many photons did you end up using? In general terms, how
did the total computer time required for a fixed number of photons depend on
the case simulated?

2. What role does the single scatter albedo play in determining the bulk radia-
tive fluxes of the cloud layer, all other factors being equal? Why? Under what
conditions does a small amount of absorption (SSA = 0.999) have the most
dramatic impact on the fluxes, and why?

3. What role does the single scatter albedo play in the angular distribution of
intensity above and below cloud? How does this role depend on other model
input parameters, and why?

4. What role does the asymmetry parameter g play in determining the albedo
and diffuse transmittance of the cloud layer, all other factors being equal? Why?

5. What role does the asymmetry parameter g play in the angular distribution
of intensity above and below cloud? How does this role depend on other model
input parameters, and why?
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6. Imagine that a large area (say 100 x 100 km) contained equal fractions of
cloud layers corresponding to each of cases 3-7. Assuming that each fraction
could be treated as effectively plane-parallel (all at the same level), average the
respective individual flux variables together to determine the average albedo
and average transmittances (diffuse, direct, and total) for the combined area.
Compare your average transmittances and albedo with the results for the in-
dividual cases and estimate (by eye) “effective average optical depths” for the
area; that is, the approximate optical depth of a single plane-parallel layer that
would likely give rise to same area-averaged transmittances. How do these effec-
tive values compare with the actual area-average optical depth of 17.02? Try to
explain any disparities between the actual and the various effective area-average
optical depths. Also, comment on the possible implications of your findings for
estimates of cloud properties and radiative fluxes derived from coarse resolution
satellite observations.

4 Procedure

Your program should basically consist of three main parts:

(1) an initialization section in which all book-keeping variables get appropriately
initialized, including user-specified parameters, like τ , ω̃, θ0, etc.

(2) a simulation section that sits inside a big do-loop (or, in C, for-loop). Each
cycle through this outer loop represents the release and subsequent trajectory
of a single photon. The loop is repeated for a total of N photons, where N is a
rather large number (a million or more).

(3) a close-out section in which the raw statistics collected during the previous
section are digested into the required physical quantities (albedo, transmittance,
etc.)

The outer loop in the 2nd of the above parts breaks down into the following
steps

1) initialize a new photon at the top of the cloud, with the specified initial
direction given by the unit vector k̂

2) determine the optical distance to the next extinction event

3) convert the optical distance along the photon path to a vertical displacement
in the model domain (measured either in geometric units or in units of optical
depth from the top of the cloud; I prefer the latter) and set the photon’s position
to that new value

4) determine determine whether the photon is scattered or absorbed (or reduce
the weight of the photon in proportion to the likelihood of absorption)

5) if scattered, determine the new direction vector k̂
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6) repeat steps 2-4 until the photon is absorbed or exits the model domain

7) increment the counter associated with the appropriate solid-angle bin, and
other relevant counters

4.1 Determining the optical distance to the next extinc-
tion event

The optical distance τp traveled by a single photon is a random variable whose
statistical distribution can be described via

τp = − ln(1− r)

where r is a random variable thatis uniformly distributed in the interval [0, 1].
That is, if you call a random number routine (such as RAN1, which I am
providing) that returns a value r between 0 and 1, plugging r into the above
relationship yields a random value of τp with the correct statistical distribution.

4.2 Determining the vertical displacement of the photon

The preferred way of tracking the vertical position of your photon is using
optical depth measured from cloud top as your primary vertical coordinate.
Among other things, this eliminates the need to assume a value for the extinction
coefficient.

Once you have found τp following the procedure above, multiplying this by the
third element of the propagation unit vector k̂ will yield the vertical displace-
ment ∆τ measured in optical units from cloud top. Make sure you make any
necessary sign adjustment to ensure that that ∆τ is positive when the photon
is moving downward and negative when moving upward (it will always start
out moving downward). If the new tau is found to be less than zero, then the
photon has exited at cloud top and you will terminate the life of that photon
without any further extinction/scattering events. Ditto if τ > τ�, implying an
exit from the cloud base.

4.3 Scattering vs. absorption

The most numerical efficient way to deal with absorption vs. scattering is to ini-
tialize each new photon with unit weight (type “float” or “real”) and then reduce
the weight at each scattering event to simulate partial absorption. Specifically,
the weight of the photon after scattering is equal to the single scatter albedo a
times the weight prior to scattering. If the weight falls below some very small
value (say, below 0.001) before it manages to escape from the top or bottom
of the cloud, then it is terminated and contributes nothing to the emerging
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fluxes. Of course, real photons cannot be partially absorbed, so this is merely
a computational trick.

4.4 Getting the new scattering direction

There are two steps to getting the new scattering direction: (1) use the random
number generator to get scattering angles Θ and Φ relative to the direction of
the photon prior to scattering, and (2) convert these photon-relative angles to
new propagation vector k̂. The geometry of the second step is worked out in a
separate handout; I am also providing a code fragment that you can adapt to
your own model code.

For the first step, we need to assume a scattering phase function p(cosΘ). The
Henyey-Greenstein phase function is a very popular one-parameter approxima-
tion to real scattering phase functions. It is given by

p(cosΘ) =
1− g2

(1 + g2 − 2g cosΘ)3/2

where g is the asymmetry parameter, which is defined as the average of cosΘ.
Thus, −1 < g < 1. Isotropic scattering would be represented by g = 0. A
typical value for g associated with the scattering of solar radiation in clouds is
0.86.

In order to implement the H.-G. phase function in your Monte Carlo model, you
need to be able to translate a uniformly distributed random number 0 < r < 1
into the corresponding value of cosΘ. This is accomplished by setting up the
following relationship

r =
∫ cos Θ

−1

p(cosΘ) d cosΘ =
∫ cos Θ

−1

1− g2

(1 + g2 − 2g cosΘ)3/2
d cosΘ

and solving for cosΘ:

cosΘ =
1
2g

[
1 + g2 −

(
1− g2

1 + g(2r − 1)

)2
]

For the azimuthal scattering angle Φ, we’ll assume that this is uniform, so
mapping from r to Φ is just a question of scaling:

Φ = 2πr

4.5 When the photon exits the cloud

If the photon’s path crosses either the lower or upper boundary of the model
domain (τ = 0 or τ = τ�), it is assumed to have either been absorbed by the
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surface or scattered into outer space, at which point you need to record its
contribution to the radiance in the appropriate solid angle bin for the purpose
of later determining reflected and transmitted intensities and fluxes.

4.6 Post-processing of tabulated results

If we take the source of the illumination to be the sun, then the (monochromatic)
flux normal to the beam is Sλ,0, which yields Sλ,0µ0 normal to the top of the
cloud. The conversion from “photons” to intensity is then derived as follows:
N0 photons total are in the incident beam (e.g., N0 = 106), thus N0 photons
represent S0µ0 W m−2 (where m2 is horizontal surface area). Thus, each whole
photon represents S0µ0/N0 W m−2 of incident or emerging radiation. Note
that if you use weighting in your model, then photons emerging from the top or
bottom of your cloud will usually have a fractional value less than 1.

In your model, you will want to tabulate the following statistics:

1) the number of photons that pass entirely through your cloud without ever be-
ing extinguished/scattered. The ratio of these photons to the incident photons
N0 gives the direct transmittance. You should verify that this direct transmit-
tance is consistent with the value computed from Beer’s Law:

tdir = exp(−τ�/µ0)

2) the sum of the weights Ntop =
∑

wi of the photons exiting the top of the
cloud. This ratio Ntop/N0 gives the albedo of the cloud top – i.e., reflected flux
divided by incident flux.

3) the sum of the weights Nbot =
∑

wi of the photons exiting the bottom of
the cloud after being scattered at least once. The ratio of this quantity to the
incident flux gives the diffuse transmittance.

4) the sum of the weights Nj =
∑

wi of the photons emerging from the cloud
top into the jth discrete “bin” of solid angle. The idea here is to obtain the
angular (azimuth and elevation) dependence of the reflected intensity.

5) same as (4), but for photons emerging from the cloud bottom. This yields
the directional intensity of diffusely transmitted radiation.

In the case of (4) and (5), it is necessary to convert the sums of collected
photons in the jth bin into an intensity Ij . The definition of I is watts (per unit
wavelength) per unit solid angle per unit area normal to the beam. Therefore

1) convert from surface area to area normal to the beam by dividing by the
µj associated with the jth bin (even better, and almost as easy, would be to
instead divide each photon’s weight by its own µi when it enters the bin), and

2) divide by the solid angle of the bin ∆ωj .

7



Thus

Ij =
Nj

µj∆ωj

(
S0µ0

N0

)

where Nj =
∑

wi for the photons entering the jth bin.

For this project, define your solid angle bins as follows: Four equal increments
of µ in each hemisphere, and eight equal increments of φ. This yields bins which
all have the same ∆ω = 2π/32.

New instructions concerning intensity: As seen above, the intensity is
proportional to the incident flux S0µ0 normal to cloud top. But S0 is arbitrary
(depending on the wavelength assumed) and has no fundamental relevance to
the operation of the model or to our interpretation of the angular distribution
of intensity.

Therefore, consistent with our determination above of hemispheric reflectance
and transmittance rather than absolute fluxes, let’s not compute absolute inten-
sities but rather intensity measured relative to that expected from an isotropic
source yielding the same transmitted or reflected flux. To accomplish this,
replace S0µ0 in the above expression for Ij with either π/r or π/tdif (as appro-
priate for cloud top or bottom), where r is the computed cloud-top reflectance
and tdif is the diffuse transmittance.
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