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a b s t r a c t

The low-cost and compact size of light-scattering-based particulate matter (PM) sensors provide an
opportunity for improved spatiotemporally resolved PM measurements. However, these inexpensive
sensors have limitations and need to be characterized under realistic conditions. This study evaluated
two Plantower PMS (particulate matter sensor) 1003s and two PMS 5003s outdoors in Salt Lake City,
Utah over 320 days (1/2016e2/2016 and 12/2016e10/2017) through multiple seasons and a variety of
elevated PM2.5 events including wintertime cold-air pools (CAPs), fireworks, and wildfires. The PMS
1003/5003 sensors generally tracked PM2.5 concentrations compared to co-located reference air moni-
tors (one tapered element oscillating microbalance, TEOM, and one gravimetric federal reference
method, FRM). The different PMS sensor models and sets of the same sensor model exhibited some intra-
sensor variability. During winter 2017, the two PMS 1003s consistently overestimated PM2.5 by a factor of
1.89 (TEOM PM2.5<40 mg/m3). However, compared to the TEOM, one PMS 5003 overestimated PM2.5

concentrations by a factor of 1.47 while the other roughly agreed with the TEOM. The PMS sensor
response also differed by season. In two consecutive winters, the PMS PM2.5 measurements correlated
with the hourly TEOM measurements (R2> 0.87) and 24-h FRM measurements (R2> 0.88) while in
spring (MarcheJune) and wildfire season (JuneeOctober) 2017, the correlations were poorer (R2 of 0.18
e0.32 and 0.48e0.72, respectively). The PMS 1003s maintained high intra-sensor agreement after one
year of deployment during the winter seasons, however, one PMS 1003 sensor exhibited a significant
drift beginning in March 2017 and continued to deteriorate through the end of the study. Overall, this
study demonstrated good correlations between the PMS sensors and reference monitors in the winter
season, seasonal differences in sensor performance, some intra-sensor variability, and drift in one sensor.
These types of factors should be considered when using measurements from a network of low-cost PM
sensors.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Fine particulatematter (PM), with an aerodynamic diameter less
than 2.5 mm (PM2.5), is a concern due to its adverse environmental
and health effects, including heart attacks, decreased lung and
cognitive function and premature death (Brook et al., 2010;
Raaschou-Nielsen et al., 2013;Weuve et al., 2012). The combination
of emission sources and atmospheric conditions can create levels of
PM2.5 that greatly exceed World Health Organization (WHO) or the
United States Environmental Protection Agency (U.S. EPA) ambient
e by Charles Wong.

T. Sayahi).
air-quality standards, and this in turn causes significant health and
economic burdens. For example, wildfires can cause the daily
average of PM2.5 levels of up to 100 mg/m3, more than 2.75 times the
24-h U.S. EPA National Ambient Air Quality Standard (NAAQS) of
35 mg/m3 (H€anninen et al., 2009; Holstius et al., 2012; Kolbe and
Gilchrist, 2009; Kunii et al., 2002). Festival fireworks, such as
Diwali in India, the Lantern Festival in China and the Independence
Day in the U.S., are also associated with elevated PM2.5 levels. For
example, Barman et al. (2009) measured 24-h PM2.5 levels of
352 mg/m3 in Vikas Negar, India, during Diwali (November 1, 2005).
Enhancing public awareness of PM10 and PM2.5 levels during
pollution events can persuade the citizens to consider the neces-
sary measures to reduce their PM exposure and consequently
health risks.

In an effort to protect the health of its citizens, governmental
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agencies have developed ambient air-quality standards and have
organized monitoring networks to track air quality (Vahlsing and
Smith, 2012). Conventionally, government organizations and re-
searchers monitor ambient PM concentrations at sparsely distrib-
uted stations with advanced instrumentation and/or filter-based
protocols, including EPA federal reference methods (FRM) and
federal-equivalent methods (FEM). Even though these methods
meet regulatory requirements and assure measurement precision,
accuracy, and consistency, the high cost and maintenance re-
quirements of FRM/FEMsmake it difficult to deploymanymonitors.
Consequently, they may not accurately capture the localized PM2.5
gradients within a city or provide sufficient resolution for epide-
miological studies (Health Effects Institute, 2010; Steinle et al.,
2013). Therefore, alternative methods are needed to complement
traditional spatially dispersed air-quality networks. The recent
availability of low-cost, light-scattering PM sensors could improve
PM measurement density and help individuals reduce their indi-
vidual PM exposure. These sensors are low-power, compact,
portable and inexpensive (<$500). Several organizations have
begun measuring and reporting PM measurements from low-cost
sensor networks, including PurpleAir and CAIRSENSE (Jiao et al.,
2016; PurpleAir, 2018). However, presenting readings from these
types of sensors, without corresponding calibration and data-
quality metrics, may result in either unjustified public content-
ment or concern (Shapiro et al., 2014).

These inexpensive sensors have limitations, and not all of them
provide meaningful air quality data (Williams et al., 2014). Their
precision and accuracy are not as good as FEMs (Shapiro et al.,
2014). Detection sensitivity may be a limitation, and one study
reports that PM measurements can be influenced by humidity
(Wang et al., 2015). Standards do not yet exist for evaluating the
performance of these low-cost PM sensors, and limited perfor-
mance information is provided by the vendors. Researchers have
begun to fill in this gap by assessing the performance of various PM
sensors under different environmental and controlled conditions
(Dinoi et al., 2017; Gao et al., 2015; Papapostolou et al., 2017; Patel
et al., 2017; Wang et al., 2015). Manikonda et al. (2016) conducted a
laboratory experiment in a room-sized laboratory chamber with
standard conditions of temperature and relative humidity (RH)
using two sources of PM (Arizona Test Dust and cigarette smoke) to
assess the performance of four inexpensive PM sensors (TSI Air-
Assure, Dylos, UB AirSense, and Speck) in comparison to three
research-grade instruments (a TSI FMPS 3091, a TSI APS 3321, and a
Grimm 1.109). The results indicated that only one of the three
AirAssure sensors correlated well (R2¼ 0.990) with APS 3321 PM
measurements; this illustrates that even sets of the same low-cost
sensor can lack precision. Gao et al. (2015) and Wang et al. (2015)
also report that low-cost sensors can lack precision. Although lab-
oratory evaluations of low-cost sensors can provide promising re-
sults, they typically fail to reflect the variability of pollution and
meteorological conditions existing in the real-world (Jova�sevi�c-
Stojanovi�c et al., 2015; Li and Biswas, 2017; Liu et al., 2017;
Mukherjee et al., 2017; Piedrahita et al., 2014; Sousan et al., 2017,
2016).

Few field studies have examined sensor performance over
extended periods of time. One notable exception is an 8-month
assessment of five types of low-cost, PM sensors (Shinyei, Dylos,
Airbeam, MetOne, and Air Quality Egg) by Jiao et al. (2016) in a low-
pollution suburban environment. They found high agreement be-
tween the low-cost sensors of the same type (R2¼ 0.980), however,
moderate correlation with a PM2.5 reference monitor (R2¼ 0.420).
Several field studies have examined sensor performance over time
periods of days to weeks. For example, in a 4-day field study, Gao
et al. (2015) tested the performance of a Shinyei sensor in highly
polluted urban areas of China (24-h PM2.5 330e413 mg/m3). The
results revealed good to moderate correlations to co-located
reference platforms, a DustTrak II model 8532 (R2¼ 0.860e0.890)
and a filter-based 24-h gravimetric PM2.5 monitor, Airmetrics
MiniVol Tactical Air Sampler, (R2¼ 0.530). In Oakland California,
Holstius et al. (2014) compared the 24-h measurements of a
battery-operated Shinyei sensor with a 24-h BAM-1020 in a long-
term evaluation (107-day period, R2¼ 0.740, and PM2.5 concen-
tration range of 0e20 mg/m3). In an urban residential area of
Houston Texas, Han et al. (2017) compared the 1-min average PM2.5
measurement of a Dylos DC 1700 PM instrument with a Grimm 11-
R (as a reference monitor) for 12 days (PM2.5 0.1e50.0 mg/m3) and
found a linear correlation (R2¼ 0.778).

This study aims to assess the performance of two models of the
low-cost Plantower particulate matter sensor (PMS) 1003 and 5003
in terms of accuracy, precision, limit of detection, and variation/
noise over a long-time period (320 days) under a variety of ambient
conditions, including several high PM episodes in Salt Lake City,
Utah caused by CAPs, wildfires and fireworks. During these epi-
sodes, daily PM2.5 levels can reach double the 24-h average NAAQS
of 35 mg/m3 and have adverse health consequences for the resi-
dents of the region, including increased risk of asthma (Beard et al.,
2012), heart attack (Pope et al. (2006) and pre-term birth
(Hackmann and Sj€oberg, 2017).

2. Materials and methods

This investigation assessed the performance of the Plantower
PMS 1003 over 320 days (January 6 to February 17, 2016 and
December 16, 2016 to October 31 2017) during periodic episodes of
high PM levels, such as several CAPs, fireworks and wildfires.
During the course of this study, Plantower released a new sensor
model, the PMS 5003 ($20), and during the second year, data were
also collected with this new sensor. The PMS 5003 operates on the
same principal as the PMS 1003, described in Kelly et al. (2017). The
PMS 5003 measures 90-degree light scattering with a photo-diode
detector that converts scattered light to a voltage pulse. The PMS
5003's light source is a laser that operates at a wavelength of
680± 10 nm (measured by a Lambda 35 spectrophotometer, Per-
kinElmer, Inc). The particle number is calculated by counting the
pulses from the scattering signal. The manufacturer uses a pro-
prietary algorithm to convert the number of pulses to PM con-
centration. A fan draws air past the laser at a flow rate of
approximately 0.1 L/min. According to the manufacturer, both PMS
sensors have a response time of less than 10 seconds, which sug-
gests that the sensors have limitations in quick changing environ-
ments. They report the sensor's mean time to failure is more than
three years, and its effective detection range is 0e500 mg/m3. For
the concentration ranges of 0e100 mg/m3 and 100e500 mg/m3 un-
certainties are ±10 mg/m3 and ±10%, respectively. Moreover, the
working temperature and RH ranges of the sensors are�10~þ60 �C
and 0e99%, respectively. The PMS 1003/5003 sensor provides PM1,
PM2.5 and PM10 mass concentration with two correction factors,
CF¼ 1 (for laboratory evaluations) and CF¼ atmos (for field eval-
uations). Details of the CF atmos factor are not available from the
manufacturer; consequently, we performed our analysis on results
using CF¼ 1. The PMS 5003 differs slightly from the PMS 1003
model in the flow pattern (position of the entrance and the laser
alignment, Fig. 1) and the laser wavelength (650± 10 nm for PMS
1003).

PurpleAir, a local community organization, operates a sensor
network based on the PMS sensors. They provided two new Pur-
pleAir I (PMS 1003) and one new PurpleAir II (PMS 5003) for the
evaluation. The PurpleAirII contains two PMS 5003 sensors
mounted in one housing. Both PurpleAir sensor models contain: a
BME280 pressure, temperature and humidity sensor, and an



Fig. 1. (A) Plantower PMS 5003 (B) schematic of Plantower PMS 5003 sensor. The
sensor is split into two layers. Air enters on the lower level, travels under the laser
stage and emerges through holes on the laser's level. The air then travels into the
laser's path, and scattered light is used to estimate PM concentration. A small DC fan
draws air through the device.

T. Sayahi et al. / Environmental Pollution 245 (2019) 932e940934
ESP8266 chip to communicate with the PMS sensor and to
communicate over WiFi to their cloud database. The firmware re-
ceives PM1, PM2.5 and PM10 concentrations every second and av-
erages the readings every 20 seconds. (PurpleAir, 2018).
2.1. Limit of detection (LOD)

The Kaiser and Specker (1956) method was utilized to estimate
the LODs for PMS 1003/5003:

LOD ¼ 3sblk
k

(1)

where sblk is the standard deviation of the sensor's output at blank
conditions. In this study, blank measurements occur when the
hourly co-located reference PM2.5 concentration (FEM) was less
than 1 mg/m3. This corresponds to 87, 152, and 105 for PM2.5 and 46,
68, and 19 for PM10 measurements for winter, spring, and wildfire
seasons, respectively. k is the slope of the linear relationship for
each PMS sensor versus FEM concentrations (fit 3, Tables Se1).
2.2. Sensor bias

The bias of the PMS sensors was determined as a ratio between
each of the PMS sensor readings at time t (PMSt) and the reference
concentration at time t (Reft) for each of the hourly measurement
points:

Biast ¼
�
PMSt
Reft

� 1
�
� 100 (2)

The normalized root mean square error (NormRMSE) was
calculated for each sensor:

NormRMSE ¼ 100� RMSE

Ref
(3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
1

ðPMSt � ReftÞ2
vuut (4)

where NormRMSE is the normalized root mean square error, RMSE
is the root mean square error of sensor readings at each time (PMSt)
over each season, Ref is the average of all the hourly reference
values for each season, andN is the number of observations for each
season.
2.3. Sensor residuals

The normalized residuals for the sensors were determined to
assess the stability of each PMS sensor over time:

Rest ¼ Reft � PMSt
Reft

(5)

in which, Rest is the normalized residual for the sensor at time t.

2.4. Field evaluation

In this study, four PMS sensors of two different models (1003
and 5003) were co-located alongside a gravimetric FRM (Thermo
Partisol™ 2025i Sequential Air Sampler) and an FEM (Thermo
Scientific 1405-F tapered element oscillating microbalance, TEOM)
at the Hawthorne state monitoring station (AQS: 49-035-3006)
beginning in Dec 2016. This monitoring site is located in an urban
residential neighborhood that lies 5 km south east of down town
Salt Lake City, Utah (longitude: 111.8721, latitude: 40.7343, eleva-
tion:1312m, Fig. S-1). Potentially significant sources in the vicinity
include one adjacent 6-lane road, one rail yard (7.5 km south west)
and two interstates (I-80, 1.6 km to the south, and I-15 3 km west).
In this study, one-minute PMS sensor readings were averaged on an
hourly or a 24-h basis for comparison with the FEM and FRMs.

Table 1 shows how the meteorological conditions and PM con-
centrations varied by season and year. It is worth noting that the
average PM2.5 concentration in winter 2017 is lower than that in
winter of 2016. Wind roses from the monitoring station for each
season can be found in the supplementary material (Fig. S-2).
During winter, the wind comes primarily from the northwest and
south. During spring and summer, the wind comes primarily from
the northwest and southeast.

The seasons in Table 1 are defined based on the differences in
PM2.5 levels and compositions. Winter is characterized by periodic
CAPs and by PM2.5 composed primarily of secondary inorganic
aerosols including ammonium nitrate, ammonium sulfate and
ammonium chloride (Tables Se2). Wildfire season is characterized
by periodic wildfire and firework impacts. During this season PM2.5
has larger contributions from crustal material and organic carbon.
Spring is characterized by low PM levels. These seasonal differences
in composition agree with previous studies (Kelly et al., 2013).

Table 1 also contains the number of observations for each sea-
son. The FRM instrument was not operating for 11% of the 2017
study period, and this 11% included significant CAP events. In the
Kelly et al. (2017) paper, the 2016 winter hourly TEOM concentra-
tions were adjusted to obtain the same 24-h average as the 24-h
FRM PM2.5 concentration. However, this study did not adjust the
hourly FEM so that a more complete PM2.5 data set could be eval-
uated. Consequently, the results in this paper for 2016 differ slightly
from the previous publication.

3. Results and discussion

3.1. LOD

Tables Se3 shows the PM2.5 and PM10 PMS sensor LODs (calcu-
lated using Eq. (1)), which were calculated separately for each sensor
during three seasons (winter, spring and wildfire seasons, 2017).
These different time periods have different number of observations
for which a TEOM measurement was less than 1 mg/m3. In 2017, the
PMS PM2.5 LODs ranged from 2.62 to 11.5 mg/m3, which lies in the
range of reported LOD values for different low-cost sensors,
1e26.9 mg/m3 (Austin et al., 2015; Wang et al., 2015). The LODs for
the PMS 1003 in winter 2017 (3.93e5.48 mg/m3, 150 readings) are



Table 1
Ambient meteorological conditions and PM concentrations during the course of the study.

Season Hourly temperature
(�C)

Hourly RH
(%)

Hourly wind speed
(km/h)

Hourly TEOM PM2.5

(mg/m3)
Hourly TEOM PM10

(mg/m3)
24-h FRM PM2.5 (mg/

m3)
24-h FRM PM10 (mg/

m3)

Winter 2016
1/6e2/17

Avg. 0.0 69.2 4.2 16.3 17.2 20.0 31.6
Range �9e15.9 26.6e88.6 0.3e21.3 0e72.5 0e140 1.5e59.2 4.0e79.0
N 742 716 976 738 752 43 23

Winter 2017
12/16/16e2/

28/17

Avg. 2.2 62.4 3.9 14.4 18.6 13.5 24.6
Range �13.5e21.0 17.0e92.9 0.6e19.4 0e74.8 0e102 1.30e45.5 4.0e66.0
N 1701 1674 1692 1664 1345 50 42

Spring 2017
3/1e5/31

Avg. 12.9 45.1 4.7 4.1 10.4 4.0 14.2
Range �1.7e31.2 8.4e88.6 0.5e21.2 0e20.0 0e166 1.1e9.3 3.00e47.0
N 2092 2104 2135 2071 2061 90 89

Wildfire 2017
6/1e10/31

Avg. 22.4 37.2 4.0 10.5 15.4 7.3 22.0
Range 0.1e39.9 2.6e89.7 0.4e16.4 0e102 0e460 1.6e35.5 4.0e76.0
N 3403 3446 3001 3224 3526 139 132

RH: relative humidity, TEOM: tapered element oscillating microbalance, FRM: federal reference method, Avg: average, N: number of samples.
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lower than the 2016 1003 LODs (13.7e14.3 mg/m3, 18 readings). This
difference in LODs is likely due to the greater number of observations
in 2017. In 2017, the PMS 1003-1 had the highest LOD (11.5 mg/m3,
spring season) because of a baseline drift, discussed further in sec-
tions 3.4-3.7. The LOD for PMS 1003e1 also illustrates how the LOD
of the same sensor can changewith the passage of time. The range of
PM10 PMS sensor LODs in winter 2017 was 11.5e15.9 mg/m3, how-
ever, lower slopes and poorer correlation between hourly PM10

TEOM and hourly PM10 PMS readings during spring and wildfire
seasons (R2¼ 0.010e0.168, slope¼ 0.033e0.286) result in higher
PM10 LODs (16.4e228 mg/m3). It should be noted that the LODs for
winter are more reliable due to broader ranges of PM concentrations
and higher coefficients of determination for the linear fits (fit 3,
Tables Se1). In general, the LOD for the PMS 1003/5003 seem to be
suitable for measuring PM2.5 when concentrations exceed 6 mg/m3

and PM10 when concentrations exceed 16 mg/m3. These LOD esti-
mates are used subsequently in Section 3.2.
3.2. Comparison of 24-h measurements

Table 2 shows the correlations between 24-h FRM PM concen-
trations and the TEOM and PMS sensors during winter 2016, and
during winter, spring and wildfire season of 2017. In both winters,
PM2.5 readings from the TEOM correlated well with the FRM
Table 2
Coefficient of determination (R2) between 24-h FRM PM mass concentrations and
24-h averaged co-located sensor measurements inwinter of 2016 and winter, spring
and wildfire seasons of 2017 (Fig. S-3).

Year Season FRM TEOM 1003e1 1003e2 5003e1 5003e2

2016 Winter PM2.5 0.994 0.884 0.887 e e

obs 46 32 33 e e

PM10 0.911 0.860 0.909 e e

obs 22 19 18 e e

2017 Winter PM2.5 0.993 0.958 0.972 0.971 0.969
obs 50 48 48 48 48
PM10 0.802 0.678 0.676 0.701 0.696
obs 33 33 33 33 33

Spring PM2.5 0.654 0.185 0.262 0.419 0.484
obs 90 81 82 82 82
PM10 0.615 0.001 0.058 0.145 0.136
obs 89 80 81 82 82

Wildfire PM2.5 0.895 0.434 0.775 0.758 0.776
obs 139 143 143 143 143
PM10 0.961 0.187 0.302 0.311 0.308
obs 132 136 136 136 136
measurements (R2¼ 0.993e0.994). The 24-h averaged PMS PM2.5
measurements also showed a strong correlationwith the FRM, R2 of
0.884e0.972 (winter 2016 and 2017). These observed correlations
are in range of those 24-h correlations reported by Zheng et al.
(2018) for five Plantower PMS 3003 sensors and an E-BAM-9800
(reference monitor) during winter 2017 (50 days) at Duke Univer-
sity (R2¼ 0.90e0.94). However, they are higher than those reported
by Holstius et al. (2014) for a Shinyei sensor and 24-h BAM-1020
measurements, R2¼ 0.74 (107-day period). In 2017, the PMS
1003s exhibited slightly higher correlations with the FRM PM2.5

measurements than in 2016, but this may be due to a larger number
of observations (32e33 in 2016 vs. 48 in 2017) or the smaller
number of days when 24-h PM2.5 concentrations exceeded 40 mg/
m3 (7 in 2016 compared to 3 in 2017). At PM2.5 concentrations
greater than 40 mg/m3 during a CAP, the PMS sensors begin to
exhibit nonlinear behavior.

Generally, the TEOM-FRM PM correlations in spring andwildfire
seasons (R2 of 0.654e0.895 for PM2.5 and 0.615e0.961 for PM10)
were also not as good as during the winter seasons (R2 of
0.993e0.994 for PM2.5 and 0.802e0.911 for PM10). Zhu et al. (2012)
reported a similar discrepancy between TEOM and FRM, which was
attributed to the loss of semi-volatile mass by FRM during warmer
weather. The range of PM concentrations is generally lower in
spring and wildfire seasons than in winter (Table 1). During spring,
86.7% of 24-h PM2.5 concentrations are less than the 6 mg/m3 LOD,
and 62.9% of PM10 concentrations are less than the 16 mg/m3 LOD.
Duringwinter andwildfire seasons, 48.0% and 43.9% (for PM2.5) and
57.4% and 29.9% (for PM10) are less than 6 and 16 mg/m3, respec-
tively. Another reason for the poorer correlations during wildfire
season may be attributed to a higher proportion of coarser parti-
cles. The mean FRM PM2.5/PM10 ratio in spring and wildfire seasons
are 0.286 and 0.336, respectively, which are significantly less than
that inwinter, 0.516 (Student's t-test, p-value< 0.001). PMS sensors
are likely not very efficient at measuring larger PM particles
because the particles must make three (in PMS 1003s) or two (in
PMS 5003s) 90-degree turns before passing the laser/photode-
tector. PMS PM10 concentrations do not correlate as well with FRM
PM10 measurements compared to the PM2.5 measurements (R2 of
0.676e0.701 in winter, 0.001e0.123 in spring and 0.187e0.311 in
wildfire season, 2017). The PMS PM10 readings during wildfire
season also did not correlated well with the FRM PM10 mass con-
centrations (R2¼ 0.187e0.311). In addition, the PMS1003-1
exhibited significant drift beginning in March 2017, and this con-
tributes to the poor correlation during the wildfire season. This is
discussed in sections 3.4-3.7.
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3.3. Comparison of hourly measurements

Fig. 2 shows the scatter plots of hourly averaged PM2.5 mea-
surements from the TEOM and the different PMS sensors during
winter 2017 (December 16th, 2016-Febuary 28th 2017). During this
season, all the PMS sensors overestimated PM2.5 when PM2.5 levels
exceed approximately 10 mg/m3. As in 2016, the PMS sensors also
began to show non-linear behavior when the TEOM PM2.5 con-
centrations increase above 40 mg/m3. Austin et al. (2015) and Wang
et al. (2015) conducted laboratory evaluations of low-cost PM
sensors over a range of concentrations (0e600 mg/m3 and
0e1000 mg/m3, respectively), and they also observed these non-
linear responses at concentrations greater than 50 mg/m3 and
100 mg/m3, respectively. They showed that nonlinearity was more
apparent for small diameter particles (less than 600 nm) and
ammonium nitrate particles. During CAPs in this region, the par-
ticles tend to have small mean diameters (below 900 nm,
Baasandorj et al., 2018) and are primarily comprised of ammonium
nitrate, ammonium sulfate and ammonium chloride (Tables Se2).
Consequently, the PMS's nonlinear response during winter CAPs is
not unexpected. After one year of deployment, the PMS 1003s still
had a high intra-sensor correlation (R2¼ 0.974 in 2017, R2¼ 0.995
in 2016, Kelly et al., 2017). The new model sensors, PMS 5003s,
correlated highly with each other as well (R2¼ 0.970). This high
PMS intra-sensor correlation was also reported in a SQAMD study
(SQAMD, 2016). Fig. 2 also shows that in winter 2017 the two
different models of PMS sensors (1003s and 5003s) have high
correlations with each other (R2¼ 0.921e0.989).

In the winter of 2016 and 2017, neither the TEOM nor the PMS
PM2.5 measurements showedmuch correlationwith four measured
meteorological factors: temperature (R2¼ 0.101e0.131), RH
(R2¼ 0.092e0.142), wind speed (R2¼ 0.116e0.138), and wind di-
rection (R2¼ 0.019e0.70). Holstius et al. (2014) also found negli-
gible association between low-cost sensor measurements and
temperature or RH in an ambient evaluation. However, in a labo-
ratory evaluation, Wang et al. (2015) found no effect of tempera-
ture, but they found that that RH affects the responses of the three
Fig. 2. Scatter plots and coefficients of determination for hourly PM2.5 (mg/m3) conc
low-cost light scattering sensors they evaluated (Shinyei PPD42NS,
Samyoung DSM501A, and Sharp GP2Y1010AU0F).

Fig. S-4 shows the hourly averaged TEOM and PMS PM10 con-
centrations for winter 2017. All the four sensors exhibit high intra-
sensor correlations between the same and different models
(R2¼ 0.925e0.987). In comparison to 2016, the PMS 1003 PM10
readings in 2017 did not correlate as well with the TEOM PM10
measurements (R2 of 0.726e0.767 in 2017 vs. R2 of 0.803e0.819 in
2016). One reason for the difference in 2016 and 2017may be due to
the total number of observations (752 in winter 2016 and 1345 in
winter 2017, Table 1). As discussed in Section 3.2, the lower cor-
relation between the PMS and the TEOM PM10 measurements may
be due to the number of 90-degree turns that the particles must
make before contacting the laser.

Fig. S-5-8 show the hourly averaged PM2.5 and PM10 scatter plots
for spring and wildfire seasons. The PMS shows poor correlations
with TEOM readings in spring (R2 of 0.183e0.324 for PM2.5 and
0.010e0.123 for PM10) and moderate/low correlations in wildfire
season (R2 of 0.538e0.724 for PM2.5 and 0.114e0.168 for PM10). As
mentioned in section 3.2, for spring and wildfire season, a large
proportion of the readings are at or below the sensor LODs and a
larger fraction of coarse particles are present. In spite of the poor
correlations with the TEOM, the 1003e2 and 5003s exhibit good
intra-sensor correlations during spring (R2 of 0.849e0.921 for PM2.5
and 0.846e0.871 for PM10) and wildfire season (R2 of 0.915e0.979
for PM2.5 and 0.940e0.978 for PM10). However, the drifted sensor
(1003e1) exhibits moderate correlations with the other three
sensors (R2 of 0.643e0.694 and 0.662e0.746 for PM2.5 and
0.658e0.725 and 0.740e0.814 for PM10 in spring and wildfire
seasons, respectively). In general, this study's results suggest that
PMS sensors are not very good measures of PM10.
3.4. Behavior during different PM events

From June through November, this region experiences periodic
episodes of poor air quality due to fireworks, wildfires and dust
storms. Fig. 3 and Figs. S-10-12 illustrate how the TEOM and PMS
entrations from the PMS 1003s and 5003s and an FEM (TEOM) in winter 2017.
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measurements track PM2.5 and PM10 concentrations during these
events. The fireworks on the 4th of July (Independence Day) and
24th of July (Pioneer Day) created spikes in the PM2.5 concentration,
which reached an hourly maximum of 29.0 mg/m3 (TEOM). Several
wildfires affected air quality, and this effect was confirmed by (a)
the Utah Division of Air Quality requesting an exceptional event
(Utah Division of Air Quality, 2017), (b) an increase in the contri-
butions of organic carbon (Fig. S-9) to PM2.5 concentrations, (c)
wildfire activity reported by the Utah Department of Natural Re-
sources, Utah Division of Forestry, Fire & State Lands, Salt Lake City,
and (d) media referring to wildfires causing poor air quality during
the period.

PM10 concentrations during the wildfire season show a pattern
similar to PM2.5 concentrations (Fig. S-10). One additional event
provides further evidence of the PMS's poor response to PM10. On
October 20, 2017 the region experienced a dust storm (Lucie, 2017;
Steenburgh, 2017), and TEOM PM10 reached 472 mg/m3 while the
co-located PMS sensors did not respond significantly to this event
(Fig. S-11B).

Beginning in March, the PMS 1003e1 readings started to drift,
and the PM2.5 concentrations reported by this sensor were
consistently higher than the PM2.5 concentrations of the other
sensors. Even during low-PM days, the PMS 1003e1 provided
baseline measurements of 15 mg/m3 rather than the 0e10 mg/m3

range reported by the other sensors. The drift continued to get
worse through the end of October.
3.5. Model fits

Various models were developed to describe the relationship
between hourly TEOM and hourly averaged PMS PM2.5 measure-
ments. A linear, a fractional, an exponential, and a linear below
40 mg/m3 models were evaluated by considering the goodness of fit
metrics including R2, RMSE (Tables Se1) and how the fits represent
the actual data in regions with sparse data. The results show that
the linear below 40 mg/m3 and the exponential fits are the best fits
to describe the PMS PM2.5 measurements during winter
(Tables Se1). The exponential model (fit 1) provides the best model
to capture the non-linear shape of the experimental data over the
entire concentration range during the CAP season. For TEOM con-
centrations less than 40 mg/m3 (fit 2), a linear model captured the
data trends best (Tables Se1).

Fig. S-12 shows the fits for the PMS PM2.5 measurements in the
Fig. 3. Hourly PM2.5 concentrations from the TEOM an
winter of 2016 and 2017, and it shows two important trends. First,
both the PMS 1003s overestimate PM2.5 concentrations, as most
data lie above the 45-degree line. Second, the sensor response did
not change after one year. This was confirmed by a Student's t-test
on the slope of linear fit 2 (p-values of 0.871 and 0.594 for 1003e1
and 1003e2, respectively). Fit 1 for the PMS 1003s suggests that
1003s overestimated the measurements of TEOM more in the
winter of the first year than the second year, which may indicate a
change in the performance of the sensor. However, the limited
number of TEOM PM2.5 concentrations above 40 mg/m3 can have a
large effect on the model fits, so additional data is needed to
determine if the sensor performance is actually changing.

Fig. 4 compares the fitted lines for the two different sensor types
in the winter of 2017. For concentrations up to 40 mg/m3, the PMS
1003s overestimate PM2.5 concentrations by a factor of 1.89. A
Student's t-test showed no statistically significant difference in the
slopes of the two PMS 1003s (p-value¼ 0.952). This overestimation
was similar in 2016 (Kelly et al., 2017). The PMS 5003e1 over-
estimates PM2.5 concentrations by a factor of 1.47, while the PMS
5003e2 roughly agreeswith the FEMmeasurements (slope of 1.08).
The slopes of PMS 5003s differ significantly (Student's t-test, p-
value <0.001). A SQAMD study compared the PMS 1003 and 5003
to a FEM and also found that the PMS sensors generally over-
estimate PM2.5 concentrations (SQAMD, 2016).

The PMS response to PM10 was linear in 2016 and 2017, during
the winter season (Figs. S-13 and S-14). Fig. S-13 compares the
linear relationship of the hourly FEM and PMS 1003 PM10 readings
in 2016 and 2017. Comparing the slopes for the PMS 1003s in 2016
and 2017 showed no statistically significant difference (Student's t-
test, p-values of 0.697 and 0.714 for 1003e1 and 1003e2, respec-
tively). Fig. S-14 and Tables Se1 show that 1003s and 5003e1
overestimate the PM10 concentrations (fit 3 slopes of 1.45, 1.50, and
1.21 for 1003e1, 1003e2 and 5003e1, respectively) while 5003e2
roughly underestimated the PM10 TEOM data (fit 3 slope of 0.909).

Figs. S-15-17 show the diurnal variations of four meteorological
factors (including RH, temperature, wind speed and wind direc-
tion) and the PM levels as well as the diurnal changes of the RMSE
of the best fits for each sensor in each season. The PMS 1003e1
(sensor that drifted) RMSEs are higher in all seasons and exhibit
different diurnal trends compared to the other PMS sensors. The
RMSE of the fits show no consistent diurnal trends except for one
strong peak in PM10 RMSE for all PMS sensors at noon. This was
caused by the dust storm that occurred at noon on October 20, 2017
d co-located PMS sensors in wildfire season 2017.



Fig. 4. Comparison of exponential (fit 1) and linear up to 40 mg/m3 (fit 2) models fitted
to FEM (TEOM) hourly PM2.5 concentrations for PMS 1003s (A) and PMS 5003s (B) in
winter 2017.
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which increased the TEOMPM 2.5 and PM10 levels to 38.5 mg/m3 and
472 mg/m3, respectively. The diurnal changes of the meteorological
factors in Figs. S-15-17 are typical for each season in this region. The
diurnal wind pattern in this region is associated with cold air
flowing down from the mountains into the valley in the morning
and the evening. In winter 2017, PM2.5 levels generally increase
around 8 am and decrease around 7 pm which is likely associated
with the traffic. The PM levels during spring and generally wildfire
season do not seem to exhibit much diurnal pattern.
3.6. Bias

The hourly TEOM provided the reference concentrations for the
bias determination (Eq. (2)). Table 3 summarizes bias estimates of
the PMS sensors for 2016 and 2017, for the full dataset and for PMS
measurements greater than the LOD (from Tables Se3) for each
PMS sensor. The average mean bias for all PMS sensors in 2016 and
2017 was 42.5%, which is less than the 475% reported for sixty-six
Speck sensors from two outdoor campaigns (7 days with an
average PM2.5 concentration of 1.45 mg/m3, Zikova et al., 2017). For
PMS measurements greater than the LOD, the average mean bias
for both years decreases to 20.2%. Zikova et al. (2017) also observed
this strong connection between the hourly biases of the Speck
measurements and the reference Grimm 1.109 monitor. In their
outdoor campaign, the mean bias of the Speck sensors decreased
to �29% by considering only 14 data points greater than the sensor
LOD (10 mg/m3). The mean biases of both 1003s increased in 2017
compared to 2016. However, it is unclear whether the sensor per-
formance changed or the differences in the PM2.5 concentrations
during these two years led to this apparent change in performance.

PMS1003-1's response clearly drifted in spring and wildfire
season; it had the highest mean bias among the four PMS sensors,
366%. This can also be seen in the intercept of the linear fit for PMS
1003e1, which increased to 10.6 mg/m3 (Tables Se1). For values
over the LOD, the mean bias of PMS 1003-1 dropped to 122%, but is
still much greater than the other sensors (Fig. S-18).

3.7. Sensor stability and seasonal behavior

In order to evaluate the stability of the PMS sensors, the changes
in their normalized residuals (Eq. (5)) were tracked over the course
of the study. As shown in Fig. S-19, the magnitude of the normal-
ized residuals slightly decreased for PMS 1003e2 and 5003s over
the course of the study. This slight reduction in the magnitude of
the normalized residual is statistically significant (Student's t-test,
p-value¼ 0.001). During CAPs, the PMS sensors overestimate PM
concentrations, and their response becomes nonlinear, thus
decreasing the magnitude of residuals during the winter season.
The lowest residuals for all sensors occurred during the Uintah
wildfire, which substantially increased the PM concentrations in
Salt Lake City. In addition, over time, as dust deposits on the sen-
sor's photodetector, the PMS's response to light scattering may
decline, thus lowering PM measurements and consequently the
normalized residuals. After the sensors had been outside for several
months (30 months for 1003s and 18 months for 5003s), three of
the sensors were cleaned by blowing air inside the inlet and the fan,
however, this limited evaluation of cleaning sensors with canned
compressed air showed no improvement in the magnitude of re-
siduals for the sensors after the cleaning (Fig. S-20). In fact, the
residuals increased for a few days after cleaning. Blowing canned
air into the sensor may have entrained PM deposited on the sensor
surfaces, which may have remained in the laser chamber for some
period of time. After two days, sensor 1003e2 and 5003e2
returned to their normal behavior but 5003-1 did not. It is possible
that blowing air into that sensor could damage the fan. At this
point, blowing air into the sensors is not recommended although
this requires further investigation.

Fig. S-19 also shows the increase in the magnitude of the re-
siduals for PMS 1003e1 as its response began to drift. As discussed
with the wildfires, PMS 1003-1 measurements began drifting from
PMS 1003e2 in March, and this drift continued through the end of
October 2017 (Fig. 3). Subsequent inspection of the PMS 1003e1
identified a loose connection to the fan, causing the fan to behave
erratically. It is possible that the erratic fan behavior caused some
particles to be retained in the sensing chamber or that another



Table 3
Bias estimates of hourly PM2.5 concentration for the PMS sensors for all concentrations and for concentrations above each sensor's LOD.

Year Season Data range Parameters 1003e1 1003e2 5003e1 5003e2

2016 winter All readings Bias % 70.0 50.1 e e

Obs 736 684 e e

RMSE mg/m3 17.0 14.8 e e

Norm RMSE % 73.8 62.8
Over LOD Bias % 61.5 53.1 e e

Obs 395 364 e e

RMSE mg/m3 21.9 19.3 e e

Norm RMSE % 59.4 51.0 e e

2017 winter All readings Bias % 151 51.8 11.7 �14.2
Obs 1588 1588 1588 1588
RMSE mg/m3 18.4 16.0 8.52 5.54
Norm RMSE % 124 108 57.5 37.4

Over LOD Bias % 89.6 56.9 11.6 �18.4
Obs 974 1107 1231 1299
RMSE mg/m3 23.0 19.1 9.60 6.09
Norm RMSE % 103 94.1 51.7 34.3

Spring All readings Bias % 252 �22.1 �22.9 �29.1
Obs 1672 1700 1769 1769
RMSE mg/m3 18.4 16.0 8.52 5.54
Norm RMSE % 124 108 57.5 37.4

Over LOD Bias % �2.43 �37.8 �36.7 �42.6
Obs 24 431 428 387
RMSE mg/m3 25.8 20.3 10.7 6.89
Norm RMSE % 95.7 90.4 47.3 30.1

Wildfire All readings Bias % 366 3.46 22.1 20.8
Obs 3020 3009 3034 3035
RMSE mg/m3 15.1 5.05 5.80 5.40
Norm RMSE % 225 74.8 86.1 80.2

Over LOD Bias % 122 �3.72 13.0 12.9
Obs 417 2461 2454 2373
RMSE mg/m3 25.4 18.0 9.60 6.29
Norm RMSE % 96.8 98.2 51.7 33.2
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problem such as a change in laser alignment led to an increased
estimate of PM concentration.

We also considered how the PMS response varied seasonally by
comparing the linear fits of the PMS sensors to the FEM results for
each month of the study as well as the key contributions to PM2.5
mass in 2017 (Tables Se2). This table shows that month-to-month
responses compared to the FEM varied substantially. For example,
the slopes in May are 2.23e4.70 times lower than the slopes in
January. This is most likely due to the differences in both the con-
centration and composition of particles during the winter
compared to the other seasons. Tables Se2 shows that secondary
inorganic compounds (ammonium nitrate, ammonium sulfate, and
ammonium chloride) are the main contributors to PM2.5 during
winter (greater than 61.1%), and during spring and wildfire season
the secondary inorganic aerosols contribution decrease while
contributions of elemental carbon, organic carbon and crustal
material increase. This is particularly notable in September when
the Uintah fire affected PM levels in Salt Lake City, and organic
carbon contributed 63.4% of PM2.5 mass.
4. Conclusion

Emerging technologies in low-cost, air-quality sensing offer the
potential to provide improved spatiotemporal resolution PM
measurements. This study focused on understanding the long-term
performance of four low-cost light-scattering based sensors
(Plantower PMS 1003s/5003s) under real world conditions during
several CAPs, fireworks, wildfires and a dust storm. The Plantower
PMS 1003 and 5003 provide good relative measures of PM2.5. The
results showed good correlations between the PMS sensors and the
reference monitors (PM2.5 FRM/FEM) in the winter season
(R2> 0.858), substantial seasonal variation in sensor performance,
high intra-sensor agreements (R2> 0.970), and drift in one sensor.
The PMS sensors response to PM10 was poorer than to PM2.5, and
they failed to capture a 10-fold increase in PM10 associated with a
dust storm, measured by the FEM. The different calibration factors
for a same model of sensor indicates that a systematic laboratory
calibration or an in situ calibration strategy is needed. The seasonal-
dependence of the calibration factors illustrate the need for sea-
sonal or condition-specific calibration. Finally, the identification of
sensor drift suggests that regular evaluation of the sensor mea-
surements, particularly at low PM levels, could be used to identify
poorly functioning sensors. Overall, consideration of long-term
sensor performance in the field is critical to understanding the
measurements produced from networks of low-cost PM sensors.
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