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applying (4.11) a second time. Unfortunately, there are 12 distinct
possibilities for the order in which three components are combined,
and each may yield decidedly different values of e,y for the mixture!
Even the Bruggeman formula, which does not distinguish between
matrix and inclusion, yields slightly different results depending on
the order in which the constituents are included.

In general, the Bruggeman formula tends to produce results that
fall between the extremes of the various Maxwell Garnett combina-
tions. Unfortunately, it is not obvious in most cases which, if any, of
the many possibilities is “best.”

Ultimately, any formula for the effective dielectric constant of a
heterogeneous mixture is derived based on approximations or as-
sumptions that may or may not be valid for the case under consid-
eration. Wherever possible, the chosen method should be validated
for the application in question by comparing predictions with actual
measurements.

4.2 Refraction and Reflection

When an EM wave encounters a planar boundary between two ho-
mogeneous media having different indices of refraction, some of the
energy of the wave is reflected, while the remainder passes through
the boundary into the second medium (Fig. 4.3b, Fig. 4.4). In ad-
dition, the direction of the transmitted wave in medium 2 may be
altered from the original direction in medium 1, a phenomenon
known as refraction (Fig. 4.3a). The nature of both reflection and
refraction at an interface between two homogeneous media follows
directly from Maxwell’s equations, combined with appropriate con-
tinuity constraints imposed at the boundary, and is covered exten-
sively in other texts. We will not repeat the derivations here but
simply summarize the key results.

4.2.1 Angle of Reflection

Consider an EM wave incident on a plane interface between two
media. If the local normal unit vector is fi and the direction of the
incident ray is €);, then the reflected ray ), lies in the same plane as
fi and €); but on the opposite side from ). Furthermore, the angle
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a) Refracfion

b) Reflection

Fig. 4.3: Geometry of (a) refraction and (b) reflection of plane waves at an air-water
interface.

©;, between ), and fi equals the angle of incidence ®; defined by
and Q);.

In simple terms, a ray of light (or other EM radiation) reflects
from a smooth surface much like an ideal elastic ball thrown at
the floor: the component of its motion perpendicular to the surface
abruptly reverses, while the component parallel to the surface re-
mains unchanged. Reflection obeying this rule is termed specular
reflection. The basic requirement in order for reflection to be spec-
ular is that any irregularities on the surface must be much smaller
than the incident wavelength. In the visible band, this is generally
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Fig. 4.4: Reflection and transmission of normally incident radiation.

true of glass, polished metals, most liquids (including water), and
many plastic materials.

4.2.2 Angle of Refraction

When an incident ray of radiation falls on a smooth surface, reflec-
tion is usually not total. The part of the beam that is not reflected
passes into the second medium. In general, the transmitted ray
changes direction according to Snell’s Law

sin®; sin®;
— , 4.1
N, N, (4.13)

where N7 and N, are the indices of refraction of the first and second
medium, respectively, and @ is the angle of the transmitted ray €);
relative to fi. Although N; and/or N> may be complex, the above
law is most easily interpreted when the both are real, or nearly so
(i.e., weak absorption).

Case 1: ®; = ©; = 0. If a ray is normally incident on a surface,
there is no change of direction as it enters the second medium.
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Case 2: @; > 0; N; > Nj. A ray incident obliquely on a medium
with larger index of refraction will bend toward the local normal;
i.e., ®; < ©;. This situation describes sunlight falling on a smooth
water surface, such as the surface of a pond or the exterior surface
of a raindrop.

Case 3: ©; > 0; N; < Nj. A ray incident obliquely on a medium
with smaller index of refraction will bend away from normal; i.e.,
©®; > O;. This situation arises, for example, when a ray of sunlight
that has already entered a raindrop attempts to exit on the far side.

Case 3 above includes an interesting and important special case.
Consider the possibility that

®; > O, (4.14)

where the critical angle is defined as

By = arcsin (gj) (4.15)
provided that N; < Nj. But (4.13) would then imply sin ©; greater
than one, a mathematical impossibility! The way out of this appar-
ent paradox is to recognize that waves incident on the interface at
an angle greater than the critical angle simply cannot pass through
the interface at all but rather experience fotal reflection.

This is a good opportunity, by the way, to point out that the path
taken by a beam of light is invariant with respect to reversal of di-
rection. Viewed one way, ®g defines the threshold for total internal
reflection within the denser medium; viewed another, it describes
the maximum possible value of ®; when light is externally incident
on the medium at the largest possible angle (®; = 90°).

In the visible band, N; ~ 1.33 for water and N, =~ 1 for air;
hence, in water, ©y ~ 49°.

roblem 4 2: - Showfthat ,;for real N Snell’s Law (4 13) can be de- :
ved geometrlca]ly by requiring that the intersection of wave fronts
~ with a planar boundary between two media match on both 31des of
the boundary (see Flg 4 3)
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‘(a) Reflectivity of Water (Visible) (b) Reflectivity of Water (Microwave)
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Fig. 4.5: Examples of the specular reflectivity of water as a function of incidence
angle. (a) Visible band. (b) Microwave band.

4.2.3 Reflectivity

We have just addressed three aspects of how EM waves are affected
by a planar interface between two homogeneous media: 1) the angle
of reflection (@; = ©y), 2) the angle of refraction (Snell’s Law), and
3) the critical angle for total reflection. We now turn to the following
slightly more complicated question: given that a beam of radiation
is incident on a surface at an angle ®; < @, what fraction of the beam
is reflected?

As before, the answer follows from the equations for a plane EM
wave, with suitable constraints on the continuity of the magnetic
and electric fields at the boundary. Also as before, we will not re-

produce the derivation here but rather summarize the key results,
in the form of the Fresnel relations:

cos ®; — mcos ©; 2
R, = 416
g cos®t+mcos®i| (4.16)
cos ®; — m cos O 2
= 4.17
cos O; 4 m cos O (417)
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Reflettivity (Normal! Incidence) of Water and Ice
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Fig. 4.6: The reflectivity (in air) of water and ice at normal incidence, based on
(4.21) applied to the complex indices of refraction plotted in Fig. 4.1.

where Snell’s Law can be manipulated to yield

sin ®i 2
cos®; = 4/1— — , (4.18)

and the complex relative index of refraction m is defined as

m-—m.

(4.19)

Ry, and Ry are reflectivities. They give the fraction of an incident
beam of radiation that is reflected from a smooth interface, given
the local angle of incidence ®; and the relative index of refraction
m.

But why do we have two expressions for reflectivity? It turns
out that this is one of those cases when the polarization of the inci-
dent radiation matters. R, defines the reflectivity when the electric
field vector is parallel to the plane of incidence; R; is valid when
the electric field vector is perpendicular to the plane of incidence.
Since any EM wave can be decomposed into parallel and perpen-
dicular polarized components, the total reflectivity can always be
found by taking an appropriate average of R, and R;. For example,
if the incident radiation happens to be unpolarized, then parallel
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and perpendicular polarizations are present in equal amounts, in
which case the total reflectivity is given by

R==(Rs+Ryp). (4.20)

N =

Note, however, that the reflected radiation is, in general, no longer
unpolarized, so it can be dangerous to disregard polarization when
considering the net outcome of multiple reflections from surfaces.
For the special case that ®; = 0, both (4.16) and (4.17) collapse to
the following single expression for the reflectivity at normal incidence:

m—1 2

m-+1

4.21)

Rnormal -

At normal incidence, there is no physically important distinction
between the two polarizations, hence the need for only one formula.

In atmospheric applications, smooth reflecting surfaces are of-
ten horizontal, the most common example being a water surface,
such as the ocean or a lake. In this case, parallel polarization is
often known as vertical polarization, and perpendicular polarization
equates to horizontal polarization. The corresponding reflectivities
are then written as R, and R;,. This terminology is common in the
field of microwave remote sensing, where the rather large differ-
ence between R, and Ry, is of great practical importance. Figure
4.5a gives examples of R, and Ry, as functions of incidence angle for
water in the visible band. The following features are of particular
interest:

e In general, the reflectivity is quite low (2%) for light at near-
normal incidence (®; = 0) but increases sharply to 100% for
near-grazing angles (®; — 90°). In other words, a smooth
water surface is a rather poor reflector of sunlight at high noon
but an excellent reflector of the setting sun. This is of course
consistent with everyday experience.
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e Except at near-grazing and near-normal incidence, the reflec-
tivity for vertical polarization is much lower than that for hor-
izontal polarization. It is this fact that led to the development
of polarizing sunglasses, which block the largely horizontally
polarized glare from water and other reflecting surfaces while
transmitting vertically polarized light from other sources.

e There is a single angle ®p, known as the Brewster angle, at
which the reflectivity for vertically polarized radiation van-
ishes completely, implying that only the horizontally polarized
component of incident light survives reflection at that angle.

By setting the numerator in (4.16) equal to zero and solving
for sin ®;, we find that

®p = arcsin (4.22)

m24+1"

For water in the visible band, the ®p = 53°.

All of the above features can be found in the reflectivities of
most nonconducting materials; i.e., those for which #; is zero or at
least very small. Larger values of the real part of m lead to greater
overall reflectivities, larger values for the Brewster angle ®g, and
smaller values for the critical angle for total internal reflection .
Diamonds, with their unusually large N = 2.42, owe their alluring
sparkle to all three properties.

- ”‘"Problem 43 8 N=15 with
N =242 find the values of the reﬂechvn‘.y“at normalf’ mc1dence andf

. . ;l’the crltlcal angle for total mtemal reflection ©p. In both cases, as-
.~ sume that the external mechum is air, W1th N ~ 1.0, ‘ o
o results Wlth thelr counterparts for wat o

In the case of conducting materials, e.g., metals, as well as liquid
water at microwave frequencies (Fig. 4.5b), the imaginary part of m
is significantly greater than zero and also contributes to increased
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reflectivity. However, although the vertically polarized reflectivity
still has a minimum at some angle @3, that minimum is no longer
zero. Therefore, (4.22) cannot be used to find ®3 in such cases.

4.3 Applications to Meteorology, Climatology,
and Remote Sensing

4.3.1 Rainbows and Halos
Geometric Optics

In the previous section, we tacitly assumed that we were dealing
with EM waves incident on a planar (flat) boundary between two
homogeneous media. However, the above rules for reflection and
refraction can be applied not only to planar boundaries, but to any
surface whose radius of curvature is much greater than the wave-
length of the radiation. In this case, the angles ®;, ©;, ®,, O, etc.,
are measured relative to the local normal where the ray intercepts
the surface. With this generalization, we have the ability to analyze
the scattering and absorption properties of a variety of atmospheric
hydrometeors via the straightforward technique of ray tracing, also
known as geometric optics.

Unfortunately, most particles in the atmosphere are not much
larger, and may even be smaller, than the wavelength of interest.
This is true for air molecules, aerosols and cloud droplets in the vis-
ible and infrared bands and even raindrops in the microwave band.
Geometric optics cannot be used for these cases; rather, more so-
phisticated solutions to the wave equation must be derived. These
solutions and their interpretation will be outlined in Chapter 12.

Nevertheless, there are a number of interesting cases for which
the particle size is much larger than the wavelength. This condition
applies for example to the scattering of visible sunlight (A < 0.7 ym)
by large cloud ice particles (>50 ym) and raindrops (100 ym < r <
3 mm). In fact, a number of common optical phenomena, such as
rainbows, halos, and parhelia (sundogs) can be explained by geo-
metric optics, simply by considering how rays of light refract and
reflect as they encounter the surface of the particle.
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Fig. 4.7: Ray tracing geometry for a spherical water droplet of radius 4, for a ray
incident at distance r from a parallel line passing through the drop center. 6; and
0; denote the incident and transmitted angles relative to the local normal and are
related by Snell’s law. © is the angle of scattering relative to the original direction
of the ray, in this case for a ray that has undergone a single internal reflection.

The Rainbow

To a reasonable approximation, a falling raindrop is spherical. If a
spherical droplet is uniformly illuminated, then the geometry of the
path of each incident ray depends only on x = r/a, where r is the
distance of the incident ray from the center axis of the drop, and a
is the radius of the drop (Fig. 4.7). So x = 0 corresponds to a ray
that is incident “dead center,” while x = 1 corresponds to a ray that
barely grazes the edge of the sphere.

Now let’s follow the path of a single incident ray after it inter-
cepts the drop:

1. A fraction of the energy in the ray will be reflected upon its
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first encounter with the surface of the drop. If the incident

radiation is unpolarized, then that fraction will be given by the

average of the Fresnel relations (4.16) and (4.17), evaluated for
the local angle of incidence 6;. Fig. 4.5 reveals that this fraction
is typically only a few percent, except when the ray strikes the
sphere at a near-grazing angle.

. Whatever is not reflected is transmitted into the drop and re-

fracted to an angle 0; relative to the local normal, as required
by Snell’s Law.

. The above ray now encounters the back side of the drop,

where a small fraction (a few percent) is reflected internally,
as determined again by the Fresnel relations. The remainder
exits the drop again at an angle 6; relative to the local normal.

. That portion of the original ray that was internally reflected

now encounters the surface from the inside again. As before,
a fraction is reflected internally (now for a second time), while
the remainder is transmitted to the exterior. It is the part that
escapes at this point that is responsible for the primary rain-
bow.

. The above process is repeated for each additional internal re-

flection. However, after only two internal reflections, very lit-
tle of the original energy in the incident ray remains inside the
drop. The part that exits the drop after exactly two internal
reflections is responsible for the secondary rainbow.

As noted above, the primary rainbow is associated with radi-

ation that undergoes a single internal reflection before exiting the
droplet again, so let’s take a closer look at that case. Figure 4.8a de-
picts the full range of possible paths for rays undergoing a single
internal reflection. If the incident ray encounters the droplet dead
center (x = 0), it of course gets reflected exactly backward from
the rear surface of the drop, so the scattered direction for that ray
is 180°. A ray that encounters the droplet just slightly off-axis will
undergo a slight degree of refraction, reflect off the rear surface at a
slightly non-normal angle, and ultimately exit the drop at an angle
near to, but not quite equal to 180°.
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Fig. 4.8: Illustration of the ray-tracing method applied to a spherical water drop.
(a) Diagram tracing the rays that undergo a single internal reflection, assuming
uniform incident illumination. (b) Angles and relative intensities of the scattered

rays.
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Starting at ® = 180° on the right edge of the plot in panel (b), we
see how © for each subsequent ray (increasing x) initially decreases
at a fairly steady rate. Also shown is the relative intensity of the ex-
iting ray, based on the fraction that “survives” this particular path
according to the Fresnel relations. The overall intensity in a partic-
ular direction is proportional to the intensity of the individual rays
times the density of rays per increment of ©.

Although the trend initially is toward ever-smaller ©, there
comes a point where ® reaches a minimum, which we’ll call ®,,
and starts increasing again. For water, which has an index of refrac-
tion of approximately 1.33 in the visible band, ®, ~ 137°.

Because the reversal is gradual, there is a fairly significant range
of x for which the scattered rays all bunch up rather close to ®. It
is this “focusing” of energy on a narrow range of ® that gives rise to
the bright ring that we call a rainbow. Of course, a rainbow is only
visible when a rainshower is illuminated by a directional source of
bright light — e.g., sunlight.

The precise value of @y depends of course on the index of re-
fraction: increasing #, has the effect of increasing ®y. A rainbow
exhibits the characteristic separation of colors for which it is best
known because 7, for water increases slightly from the red end to
the violet end of the visible spectrum (Fig. 4.1).

As already mentioned, a similar process is behind the much
weaker secondary rainbow, which arises from two internal reflec-
tions. The scattering angle for the second rainbow is approximately
130°, which puts it about 7° outside the primary rainbow, when you
are viewing it with the sun at your back.

Halos and Related Optical Phenomena

Ray tracing can also be used to explain optical features like halos,
which are bright rings that appear around the sun in conjunction
with a thin cirrostratus cloud layer, and parhelia  (or sundogs),
which are bright iridescent spots positioned on either side of the
sun, usually in connection with cirrus clouds, when the sun is fairly
low in the sky. In both cases, the most common angle separating
the halo or parhelion from the sun is 22°. This scattering angle is
associated with refraction (without internal reflection) through two
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faces of a hexagonal ice crystal whose extensions form a 60° angle.

In contrast to the case for the rainbow, ray tracing analysis of var-
ious optical phenomena associated with ice crystals is complicated
by the fact that they are not spherical. Therefore, results for all pos-
sible orientations of the crystal must be obtained and then averaged
together. Halos are associated with randomly oriented crystals, but
most other optical phenomena in cirrus clouds, including sundogs,
require ice crystals falling with a preferred orientation.

A fuller discussion of the optics of rainbows and haloes may be
found in BHS83, section 7.2 and 7.3, and L02, section 5.3.



