CHAPTER 11

The Radiative Transfer Equation With Scattering

Throughout this book so far, we have discussed scattering primar-
ily as one of two mechanisms for extinguishing radiation, the other
mechanism being absorption. Thus, the extinction coefficient B
could be decomposed into the sum of the absorption coefficient S,
and scattering coefficient Bs. The single scatter albedo @, defined
as Ps/Pe, was introduced as a convenient parameter describing the
relative importance of absorption and scattering: when @ = 0, ex-
tinction of radiation is entirely by way of absorption; when @ = 1,
then there is no absorption, only scattering.

When radiation is extinguished via scattering, its energy is not
converted to another form; rather, the radiation is merely redi-
rected. The loss of radiation along one line-of-sight due to scattering
is therefore always associated with a gain in radiation along other
lines-of-sight passing through the same volume.

You can easily observe the above phenomenon with the help of
a powerful, narrow beam of light, such as that from a searchlight, an
automobile headlight or a laser pointer. When the air is very clear
—i.e., free of smoke, dust, haze, or fog — then the beam can pass di-
rectly in front of you and you will not see it, because essentially none
of the radiation is scattered out of the original path into the direction
-toward your eyes. But if the air contains suspended particles, then
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these particles will scatter some fraction of the beam into all direc-
tions, including toward your eyes, and the path of the beam will be
clearly apparent, especially against a dark background. In this case,
scattering clearly serves as a source of radiation, as seen from your
vantage point. Of course the original beam is depleted by the same
process. For example, if a fog is thick enough, the headlights of an
oncoming car can’t be seen at all until it is relatively close to you.

This chapter introduces the terminology and mathematical no-
tation required to account for scattering as a source of radiation in
the radiative transfer equation.

11.1 When Does Scattering Matter?

When scattering is important as a source of radiation along a partic-
ular line-of-sight, then the complexity of calculations of radiative
transfer along that line-of-sight greatly increases compared with
the nonscattering case. This is because one must, in the worst
case, solve for the intensity field not just in one direction along a
one-dimensional path but for all directions simultaneously in three-
dimensional space! You would therefore like to be able to neglect
scattering (as a source, at least) whenever you can get away with
it.

In fact, you can safely ignore scattering as a source whenever
gains in intensity due to scattering along a line-of-sight are negligi-
ble compared with (a) losses due to extinction and (b) gains due to
thermal emission. In the atmosphere, these conditions are usually
satisfied for radiation in the thermal IR band and for microwave ra-
diation when no precipitation (e.g., rain, snow, etc.) is present. In
addition, if one is concerned only with the depletion of direct radi-
ation from an isolated, point-like source, such as the sun, then the
above conditions are usually satisfied to reasonable accuracy.

For virtually any problem involving the interaction of short-
wave (ultraviolet, visible, and near-IR) radiation with the atmo-
sphere, scattering is the dominant atmospheric source of radiation
along any line-of-sight other than that looking directly at the sun.
The blue sky, white or gray clouds, the atmospheric haze that re-
duces the visual contrast of distant objects — all of these make their
presence known primarily by way of scattered radiation.
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11.2 Radiative Transfer Equation with Scattering

11.2.1 Differential Form

Previously, we derived Schwarzschild’s Equation (8.4) under the as-
sumption that scattering was unimportant-and that therefore . =
Ba- Under that assumption, we found that the change in intensity
dI along an infinitesimal path ds could be written as

dl = dlps + dlemit , (11.1)
where the depletion due to absorption is given by
Al = —Bal ds, ' (11.2)
and the source due to emission is
Alemit = BaB(T) ds . (11.3)

In order to generalize the equation to include scattering, we must
recognize that depletion occurs due to both absorption and scatter-
ing, so that B. rather than B, must appear in the depletion term.
Moreover, we must now add a source term that describes the con-
tribution of radiation scattered into the beam from other directions,
so that

dl = dIext + dIemit + dIscat 7 : (11-4)

where ,
Alext = —Pel ds . (11.5)

The term dlse: requires more thought. First, we know it must be
proportional to the scattering coefficient s, since without scatter-
ing there can be no contribution from this term. Second, we recog-
nize that radiation passing through our infinitesimal volume from
any direction €)' can potentially contribute scattered radiation in the
direction of interest Q). Moreover, these contributions from all di-
rections will sum in a linear fashion — that is, the path taken by a
photon arriving from one direction is not influenced by the presence
of, or paths taken by, other photons.
Mathematically, these ideas are expressed as follows:

Ao — ﬁSL/ p(CY, () da]ds (11.6)
47
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where the integral is over all 47 steradians of solid angle, and the
scattering phase function p(€}, Q) is required to satisfy the normal-
ization condition

1

- /M p(QY,0)dw’ =1. (11.7)

The Cdmplete differential form of the radiative transfer equation can
thus be written

dl = —Belds + BaBds + %/ p(OY,NI(O)dw' ds.  (11.8)
4r

Dividing through by dT = —eds, we can write

anQ) . . @
Iz =I1(Q))—(1—-w)B

_w A A A/ /
B [ p( @, I dw,

(11.9)
where, in the interest of clarity, we make the dependence of I on
direction ) explicit.

This is the most general and complete form of the radiative transfer
equation that we will normally have to deal with in this book.!

Note that it is often convenient to lump all sources of radiation
into a single term, so that (11.9) may be written in shorthand form
as

d1(Q))

= 1) - J(Q), (11.10)

where the source function is given by

J(Q) = (1-@)B+ % [m p(QY, M) dw' . (11.11)

1We have defined dt here to be negative for translation toward the detector.
This means that negative terms on the right hand side are source terms, and posi-
tive terms imply depletion. Some textbooks use the opposite convention, in which
case the signs of all terms on the right hand side are reversed.
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‘We see that the total source is a weighted sum of thermal emission

and scattering from other directions, with the single scatter albedo
controlling the weight given to each. If @ = 0, the scattering term
vanishes; if @ = 1, the thermal emission component vanishes.

11.2.2 Polarized Scattering’

Throughout most of this book, we have ignored the role of polariza-
tion in atmospheric radiative transfer and considered the effects of
transmission, absorption and scattering only on the scalar intensity
I. Although this is almost always an approximation, it is often a
very good one. There are times, however, when it is necessary to re-
vert to a more accurate fully polarized treatment of radiative transfer,
which requires us to consider changes not only in I but in all ele-
ments of the four-parameter Stokes vector I = (I, Q, U, V) that was
introduced in (2.52). The fully polarized version of the differential
radiative transfer equation (11.9) can be written

dlé?) =1(Q)) — (1—@)BU — —/M (&Y, 01(QY) do', (11.12)

where P((Y, Q) isa 4 x 4 scattering phase matrix, and U = (1,0,0,0)
when @ is considered to be independent of polarization. The latter
assumption is not guaranteed to be valid; indeed, for some prob-
lems involving preferentially oriented particles, such as might be
encountered in ice clouds or snowfall, even @ and the extinction
coefficient B (implicit in T) may each depend on both polarization
and direction.

You are most likely to encounter the fully polarized RTE in the
context of certain remote sensing problems. A more comprehen-
sive discussion of polarized radiative transfer (though still with
some simplifications, such as polarization-independent extinction
and optical path) is given by L02 (Section 6.6). For the remainder
of this book, we will continue to rely on the scalar form of the RTE
given by (11.9) unless otherwise noted.

11.2.3 Plane Parallel Atmosphere

Although we know that the atmosphere is far from horizontally
homogeneous, especially where clouds are concerned, most ana-
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lytic solutions and approximations to the radiative transfer equa-
tion with scattering have been derived for the plane parallel case.
Why? There are three basic reasons:

e Plane-parallel geometry is really the only semi-realistic case
that lends itself to straightforward analysis and/or numerical
solution (e g., in climate and weather forecast models).

e There are mdeed problems (e.g., the cloud-free atmosphere,
horizontally extensive and homogeneous stratiform cloud
sheets) for which the plane-parallel assumption usually seems
quite reasonable as an approximation to reality.

e Even where it is not reasonable, there remains considerable
doubt about the best way(s) to handle three-dimensional inho-
mogeneity, especially when computational efficiency is essen-
tial. Therefore investigators tend to fall back on plane-parallel
geometry (with minor embellishments, such as the so-called
independent pixel approximation), knowing that it is not perfect
but believing it to be better than nothing at all (this is fine, as
long as the potential for large errors is understood by all con-
cerned!).

To adapt (11.10) to a plane-parallel atmosphere, we reintroduce
the optical depth T, measured from the top of the atmosphere, as
our vertical coordinate, and we will henceforth use y = cosf to
specify the direction of propagation of the radiation measured from
zenith.2 We then have

w8 )~ 1), (11.13)

where the source function for both emission and scattering is

2
e 9) = 108+ 2 [T plaogs i, 016, 9") dilde)
(11.14)

2Some textbooks, such as L02 and S94, specify that j = cos . Others, such as
TS02, instead define u = |cosf|, as I also did in an earlier chapter of this book.
When writing the equations of radiative transfer with scattering, each convention
has its own advantages and disadvantages. Here I have chosen the definition that
permits the same equation to be used for both upward and downward radiation.
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There is only a relatwely small class of applications in which it
is necessary to consider both scattering and emission at the same
time. Two examples include (1) microwave remote sensing of pre-
Ei?fﬁtion, and (2) remote sensing of clouds near 4 ym wavelength,
Tor which scattered solar radiation may be of comparable impor-
tance to thermal emission. Except where noted, the rest of this book
will focus on problems involving scattering of solar radiation only,
without the additional minor complication of thermal emission.

11.3 The Scattering Phase Function

One way to give physical meaning to the scattering phase function
is to regard Z=p(CY, 1) as a probability density: Given that a pho-
ton arrives from direction €)' and is scattered, what is the proba-
bility that its new direction falls within an infinitesimal element dw
of solid angle centered on direction ()? The normalization condi-
tion (11.7) simply ensures that energy is conserved when there is no
absorption (@ = 1); i.e., the new direction of a scattered photon is
guaranteed to fall somewhere within the available 47 steradians of
solid angle, and you can’t get more (or fewer) photons out than you
put in.

The functional dependence of the phase function on €} and o)
can be quite complicated, depending on the sizes and shapes of the
particles responsible for the scattering. Nevertheless, an important
simplification can be made when particles suspended in the atmo-
sphere are either spherical or else randomly oriented. For exam-
ple, cloud droplets are spherical, and small aerosol particles and air
molecules, while generally not spherical, have no preferred orienta-
tion.® In such cases, the scattering phase function for a volume of
air depends only on the angle ® between the original direction €}
and the scattered direction €)', where

cos®@=0"-0. (11.15)

3Falling ice crystals, snowflakes, and raindrops generally do have a preferred
orientation due to aerodynamic forces, and this directional anisotropy must some-
times be considered in radiative transfer calculations.
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The ability to replace p(€Y,}) with p(€) - Q}) = p(cos®) is very
helpful, inasmuch as the number of independent directional vari-
ables needed to fully characterize p is reduced from four (two each
for () and €)') to only one. The normalization condition (11.7) then
reduces to

1 2 pm
v / / p(cos®) sin@d@d¢ =1, (11.16)
0o Jo

or

1
%/ p(cos®) dcos® =1. (11.17)
-1

Except where noted, this simplified notation for the phase function
will be utilized throughout the remainder of this book.*

11.3.1 Isotropic Scattering

The simplest possible scattering phase function is one that is con-
stant; i.e.

p(cos@®) =1. (11.18)

Scattering under this condition is known as isotropic. It describes
the case that all directions €} are equally likely for a photon that has
just been scattered. Thus, the new direction the photon takes is in
no way predictable from the direction it was traveling prior to being
scattered; in other words, the photon “forgets” everything about its
past.

An example of the random path of a single photon experiencing
isotropic scattering is shown in Fig. 11.1a. Note that once the pho-
ton passes into the interior of the cloud layer it wanders aimlessly,
often changing directions quite sharply with each scattering. Even-
tually, its “drunkard’s walk” takes it back to the cloud top, where
it emerges and, in this case, contributes to the albedo of the cloud.
A different random turn at any point in its path could have instead
taken it to the cloud base, where it would have then contributed

41t sometimes necessary, however, to recast a phase function that is inherently
of the form p(cos ®) in terms of the absolute directions (£}, (}) in order to facilitate
integration over zenith and/or azimuth angles 6 and ¢.
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a) 1 photon b) 3 photons

g=0 g=0.85
S / / :O

Fig. 11.1: Examples of the random paths of photons in a plane-parallel scattering
layer with optical thickness t* = 10. Photons are incident from above with 6§ =
30°. Heavy diagonal lines indicate the path an unscattered photon would take. (a)
The trajectory of a single photon when scattering is isotropic. (b) The trajectories
of three photons when asymmetry parameter g = 0.85, which is typical for clouds
in the solar band.

to the diffuse transmittance. Note that because of the large opti-
cal depth, the direct transmittance of the layer is vanishingly small;
therefore there is virtually no chance that the photon could have
passed all the way through to cloud base without first being scat-
tered numerous times. '

For isotropic scattering, the scattering source term in the radia-
tive transfer equation simplifies to

w
47T Jar

w

w A A A/ /
o | PO d

I(QY)do' . (11.19)
That is, the source is independent of both Q) and (Y and is simply
equal to the single scatter albedo times the spherically averaged in-
tensity. '

Scattering by real particles in the atmosphere is never even ap-
proximately isotropic. Nevertheless, because the assumption of
isotropic scattering leads to important simplifications in the analytic
solution of the radiative transfer equation, it is frequently employed
in theoretical studies in order to gain at least qualitative insight into
the behavior of radiation in a scattering medium.

Furthermore, for some kinds of radiative transfer calculations,



The Scattering Phase Function 329

it is possible to find approximate solutions to a problem involv-
ing nonisotropic scattering by recasting it as an equivalent isotropic
scattering problem, for which analytic solutions are easily obtained.
Such so-called similarity transformations will be discussed in a later
chapter.

11.3.2 The Asymmetry Parameter

In order compute scattered intensities to a high degree of accuracy,
it is necessary to specify the functional form of the phase function
p(cos ®). As will be seen in Chapter 12, the phase functions of real
atmospheric particles can be complex and don't lend themselves to
simple mathematical descriptions. Often, however, we don’t care
about intensities at all but only fluxes. In such cases, it is not neces-
sary to get bogged down with details of the phase function; rather,
it is sufficient to know the relative proportion of photons that are
scattered in the forward versus backward directions. The scattering
asymmetry parameter ¢ contains this information and is defined as

1
8= - [M p(cos @) cos O dw . (11.20)

The asymmetry parameter may be interpreted as the average value
of cos ® for a large number of scattered photons. Thus

~1<g<1. (11.21)

If ¢ > 0, photons are preferentially scattered into the forward hemi-
sphere (relative to the original direction of travel), while ¢ < 0 im-
plies preferential scattering into the backward hemisphere. If ¢ = 1,
this is the same as scattering into exactly the same direction as the
photon was already traveling, in which case it might as well not
have been scattered at all! A value of —1, on the other hand, implies
an exact reversal of direction with every scattering event, a special
case that is imaginable but physically unlikely.

For isotropic scattering, as discussed in the previous subsection,
we expect ¢ = 0, since scattering into the forward and backward
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~ hemispheres is equally likely. This can be shown explicitly by sub-
stituting p = 1 into (11.20), expanding dw in spherical polar coordi-
nates as sin #d0d¢, and choosing Q) = 2 so that the scattering angle
© is the same as the zenith angle 6. Thus,

L (7™ ossing d6 d
g—E/O /_n/zcos sin ¢

L o
_ - 0 sin 0
2/_n/zcos > (11.22)

1 rl
=3 )
=0

Note that while g = 0 for isotropic scattering, other phase func-
tions can also have g = 0 and not be isotropic. The best example is
the Rayleigh phase function derived in section 12.2, which describes
the scattering of radiation by particles much smaller than the wave-
length.

For many problems of interest, such as scattering of solar radi-
ation in clouds, the asymmetry parameter g falls in the range 0.8-
0.9. In other words, cloud droplets are strongly forward scattering
at solar wavelengths. Fig. 11.1b shows examples of photon paths
for ¢ = 0.85. Although the average distance traveled by a pho- .
ton between scattering events is the same as for isotropic scatter-
ing (Fig. 11.1a), the photon is now far more likely to be scattered
into a direction that is not too different from its previous direction
of travel. As a result, the photon’s path, while still random, is far
less chaotic than the isotropic case. Statistically, the photon trav-
els a much greater distance before experiencing a sharp reversal in
course. It is therefore also more likely to reach the cloud base and
less likely to exit at cloud top. In other words, we expect the dif-
fuse transmittance to increase and the cloud-top albedo to decrease
when the asymmetry is large.

11.3.3 The Henyey-Greenstein Phase Function

The scattering phase functions of particles are often rather compli-
cated (we will return to this subject in Chapter 12). As already
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Henyey-Greenstein Phase Function
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Fig. 11.2: The Henyey-Greenstein phase function plotted versus cos(®) (left) and
as a log-scaled polar plot (right).

pointed out, it is not always necessary to use a complete and ac-
curate description of p(cos ®) in a radiative transfer calculation, as
long as we know the asymmetry parameter g. For some types of
calculations, we might want to employ a “stand-in” phase function
that satisfies the following criteria:

* It should have a convenient mathematical form, ideally one
that is an explicit function of the desired asymmetry parame-
ter ¢.

* It should bear at least some resemblance to the shape of real
phase functions, even if it doesn’t have details like the rain-
bow, corona, etc. (See Chapter 12.)

* In order to be physically meaningful, the value of the phase
function should be nonnegative for all values of ©.

The Henyey-Greenstein phase function is the most widely used
“model” phase function that satisfies all of the above criteria. It is
given by

. 1— gz
14 g2 —2gcos®)3/2°

As you can see from Fig. 11.2, the HG phase function is isotropic for
g = 0. For positive g, the function peaks increasingly in the forward

(11.23)

puc(cos®) = (
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* direction but remains quite smooth. In other words, it captures the
asymmetry of real phase functions rather well but not the higher
order details.

o ‘,‘ I’\fdbl‘em&l'_'\l:l Show that the“;parameter' g appearmg m (11 23)
]| equals the asymmetry parameter as defme by (11 20) -

- Although the HG phase function with ¢ > 0 does a good job
of reproducing the observed forward peak in the phase functions
of real particles, there is often also a pronounced (but somewhat
smaller) backward peak which is not captured. Therefore, you will
sometimes see the use of a double HG function, with one of the two
terms serving to represent the backward peak:

prca(cos @) = bpug(cos®; ¢1) + (1 — b)puc(cos®; ) , (11.24)

| where g1 > 0,9 < 0,and0 < b < 1.

. ';“‘Problem 11.2 1(a) G1ven gl, gz, and b, fm he symmetryparame—f’”
tergg of the double Henye ph -

11.4 Single vs. Multiple Scattering

When a solar photon enters the atmosphere or a cloud layer from
the top, it will eventually either exit again (top or bottom) or else
get absorbed. There are no other possibilities. Before either one
happens, however, the photon may experience anywhere from zero
to a very large number of scatterings from atmospheric particles.
Recall that if the photon passes entirely through the layer with-
out getting either scattered or absorbed, then it is said to be directly
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transmitted. The probab111ty of this happening to any particular pho-
ton is given by the direct transmittance f;;, which we already know
how to compute from Beer’s Law. If, on the other hand, the photon
‘exits the layer after having been scattered at least once, then it con-
tributes to either the diffuse transmittance or the albedo of the layer,
depending on whether it exits at the bottom or the top, respectively.

It is helpful now to distinguish between two general classes of
problems: those in which single scattering dominates and those in
which miltiple scattering is the rule. In the first case, almost all of
the photons contributing to the albedo and/or diffuse transmittance
were scattered exactly once. Single scattering prevails whenever the
layer is optically thin — i.e.,, 7% < 1, because each photon that
is scattered in the interior of the layer then has a high probability
of exiting the cloud before getting scattered a second time. Single
scattering is also favored whenever the layer is strongly absorbing
(@ < 1), since a photon is then much more likely to get absorbed
than fo get scattered a second time.

If, on the other hand, the layer is both optically thick (* > 1) and
strongly scattering (1 — @ < 1), then many or most of the photons
that enter the layer will be scattered more than once, perhaps even
hundreds of times, before reemerging at the base or top of the layer.
It takes a fair amount of sophistication to solve multiple scattering
problems accurately. In fact, whole textbooks have been devoted to
just this subject. In this book, we will defer until Chapter 13 our
own fairly rudimentary treatment of radiative transfer with multi-
ple scattering.

RTE for Single Scattering

For now, let’s focus on the much simpler single scattering problem.
In the absence of thermal emission, (11.13) and (11.14) can be com-
bined to give :

dI 2 .y
H Z;(P) peo // (i, 91, ¢') dpi'dg”.

(11.25)
What makes the single scattering problem simple is that the inten-
sity I(y, ¢') inside the integral is then, by definition, the attenuated
intensity from the direct source (e.g., the sun) with no significant
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‘contribution from radiation that has already been scattered. If we
assume a parallel beam of incident radiation from a point source
above the cloud (a good approximation for direct sunlight), then
we can write

(W, ¢") = Fod (' — po)6(¢' — o)ero (11.26)

where pp < 0 and ¢p give the directions of the incident beam, Fy
is the solar flux normal to the beam, and the exponential term is
just the direct transmittance from the layer top 7 = 0 to level T
within the cloud. The Dirac é-function 4(x) is defined to be zero
for all x # 0 and infinite for x = 0, and it is normalized so that
[2 6(x) dx' =1,and [ f(x")6(x' —x) dx' = f(x).

With the above substitutions, (11.25) reduces to

yji =]- F—Ed—p(cos @)e/H, (11.27)

where the dependence of I on u, cp and T is understood and where
cos ® = Q) - () is the cosine of the angle between the incident sun-
light and the direction of the scattered radiation.

- Let’s rearrange the above equation and multiply through by
e~/

ﬂe_f/“ - lIe_T/“ = ————F d p(cos@)e T/t T/H (11.28)
at U T |
This allows us to rewrite the left hand side as a simple derivative of

a single expression:

% [Ie_f/”] = F—ﬂp(cos O)e (%_@ . (11.29)
In order to compute the scattered intensity emerging from the top
or bottom of the atmosphere, we just have to integrate the above
equation from T = 0 to T = 7*. For simplicity, we will assume here
that @ and the phase function are independent of height, so that we
can take them outside the integral. We get

I(t*)e 5 — 1(0) = — 0% 1
4y (;to ﬁ)

p(cos @) {ef*(ﬁ%“%) _ 1} ,

(11.30)
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It may surprise you to learn that the above equation is valid both
for downwelling radiation at the bottom of the atmosphere and for
upwelling radiation at the top of the atmosphere. In the first case,
we're interested in I(0) for the case that i > 0:

* Fow

I(0)=1I(t%)e ¥ +
aCaD (11.31)

In the second case, we want I(t*) for 4 < 0, which requires only a
slight rearrangement:

p(cos ©) {eT*(#—%> — 1] .

* ™ Fow ™ o
1) = 10)eF — 0 op(cos@) |6 — e | . (11
Ay <V_0 B,

To summarize, the above equations give scattered radiances at the
top and bottom of the atmosphere (or a thin cloud layer) for the spe-
cial case that all of the above are satisfied: (a) multiple scattering is
negligible, (b) @ and p(cos @) are constant, and (c) the sole external
illumination is a parallel beam source such as the sun. It's important
to recall the requirement that either @ < 1 and/or T* < 1 in order for the
first of these requirements to be satisfied.

Let’s take things a step further. First, we’ll focus only on the scat-
tered atmospheric contribution to the radiance and drop the term
that describes the direct transmission of radiation from the opposite
side of the atmosphere (we can always add it back, if we want it).
Second, we’ll assume that the reason why we can neglect multiple
scattering is that 7" < 1, and we’ll further assume that o and y are
not much smaller than one. Taking advantage of the fact that, for
small x, e* = 1+ x, we can then simplify our equations to

Foru >0, 1(0)

F()(I)T* .
— 09T (cos®). 11.33
For 1 < 0, Iu)} (cos©) (11.33)

The interpretation of the above equation is straightforward — so
straightforward in fact, that we probably could have guessed it
without going through all the previous steps. First, the quantity
Fot* tells us the magnitude of the extinguished solar flux (recall
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~ that this is valid only in the limit of small 7*). Second, the quan-
tity (@w/47)p(cos @) tells us how much of the intercepted flux con-
tributes to the scattering source term in a given new direction €).
Finally, the factor 1/u accounts (to first order) for the fact that you
are looking through less atmosphere if you view it vertically than if
you look toward the horizon; consequently the path-integrated con-
tribution of scattering to the observed intensity increases toward the
horizon.

11.5 Applications to Meteorology, Climatology,
and Remote Sensing

11.5.1 Intensity of Skylight

We imposed several seemingly drastic restrictions in deriving
(11.33): ™ < 1, @ and p(cos ®) independent of T, u and pg not too
small. In fact, these assumptions are reasonably well justified for
molecular scattering of visible and near-IR sunlight in the cloud-
and haze-free atmosphere, as long as (a) you stay away from the
blue and violet end of the spectrum, and (b) you don't get too close
to the horizon.

Therefore, to evaluate the radiant intensity of the sky (apart from
the direct rays of the sun itself) you need only specify the optical-
depth T* of the cloud-free atmosphere at the wavelength in ques- -
tion, supply a suitable phase function p(®), and substitute these
into (11.33) for arbitrary u and uo.
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As will be shown in Chapter 12, the scattering phase function of
air molecules in the visible band is

(1+ cos® @) . (11.34)

=1

p(®) =

This so-called Rayleigh phase function is quite smooth and is per-
fectly symmetric with respect to forward and backward scattering
(¢ = 0). The factor-of-two variation in intensity implied by the
above phase function is relatively minor and is unlikely to be ob-
vious to the eye, especially since it is such a smooth function of the
scattering angle ©. Consequently, we expect the radiant intensity
of the sky to appear rather uniform, punctuated only by the narrow
spike of high intensity associated with the directly transmitted light
of the sun.

Although p(®) has the same shape for molecular scattering at
all visible wavelengths, the optical depth 7* of the cloud free atmo-
sphere is a strong function of wavelength. In fact, it is shown in the
next chapter that T o A~%. Thus, (11.33) implies that the intensity
of skylight due to molecular scattering should also be proportional
to A™* and, indeed, it is precisely this dependence that gives us the
blue sky. It is also because T* stops being “small” at shorter wave-
lengths that we can't trust (11.33) to give us accurate sky intensities
in the blue and ultraviolet part of the spectrum.

Of course, even the cleanest air found in nature contains not only
molecules, but other kinds of particles called aerosols. There are
typically many thousands of aerosol particles in every cubic cen-
timeter of air. Those of interest to us here have sizes ranging from
1072 um to ~1 um or larger. The scattering of visible light by such
comparatively large particles (compared to molecules, that is!) is
not as strongly dependent on wavelength as is molecular scatter-
ing; furthermore the scattering phase function for aerosols is not
symmetric like the Rayleigh phase function but rather exhibits fairly
strong forward scattering.

We can summarize the comparative scattering behavior of air
molecules and aerosols in the solar band as follows:
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Molecules Aerosol

Wavelength 44

dependence: weak
p(©): smooth, symmetric  strongly asymmetric
zt:g:r/l}ic:fi?n nearly constant highly variable

1 rese Ltkce of scattermg aerosols (e g haze) Woul 1 be xpected to visi- ,;‘:1
' the sky d (b) the angular dependence*

everyday experlence'?«

11.5.2 Horizontal Visibility

Every hour, at tens of thousands of locations around the globe, de-
tailed weather observations are made by trained observers or auto-
mated weather instruments. It is no coincidence that a large major-
ity of these stations are associated with airports. It was the need for
timely local weather observations in support of aviation, more than
any other single factor, that led to the emergence of a dense global
weather observing network during the twentieth century.

Although pilots care about a lot of weather variables, the two
that are most often of critical concern are (a) cloud ceiling height and
(b) horizontal visibility. Both affect pilots” ability to safely land at
airports and to see and avoid other air traffic. It is the latter variable
we will address here, since it is closely tied to the subject of this
chapter.

Visibility is defined as the maximum horizontal distance over
which the eye can clearly discern features like runways, obstacles,
navigation lights, etc. On a clear day in the desert, visibility often
exceeds 100 km. But in a pea-soup fog on the California coast, visi-
bility may be measured in meters rather than kilometers.
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On first confronting this problem, your initial assumption might
be that visibility is controlled entirely by the extinction coefficient S,
along the line-of-sight. After all, the transmittance over a distance s
is just
t=ePes (11.35)
One might argue, therefore, that there is some minimum transmit-
tance tmin associated with the limit of human perception, so that the
visibility V should be related to ¢ as follows:

V= =L log(tmn) - (11.36)

But such an analysis is too simple. Consider the following exam-
ples:

* Translucent (“two-way”) mirrors are often used in department
stores to facilitate the detection of shoplifters by security per-
sonnel. The transmittance is the same for light traveling in ei-
ther direction through the mirror, but a shopper in a brightly
lit room viewing the mirror from the reflective side can’t nor-
mally see what’s on the other side and probably doesn’t even
realize that it transmits at all. The person (or camera) viewing
from the nonreflective side, however, can see through easily,
especially if they are situated in a darkened room.

e If you let the windshield on your car get moderately dusty, its
transmittance is somewhat reduced, but normally this reduc-
tion is fairly minor. In fact, when driving away from the sun
during daytime, it may be scarcely noticeable. But if you turn
in the direction of the setting sun, you may suddenly find it al-
most impossible to see! What has changed? Not the transmit-
tance, but rather the glare of light scattered in your direction
by the coating of dust particles.

From the above examples, we can perhaps begin to appreciate that
it’s not transmittance but rather visual contrast that determines what
we can and can’t see. We will define the contrast here as the frac-
tional difference between the apparent brightness (radiant intensity)
I of an object and the brightness I’ of its surroundings:

I'—1

C= 7

(11.37)
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In a purely absorbing atmosphere, a mere reduction in trans-
mittance along a line-of-sight has no impact on the visual contrast
between two objects at the same distance, and therefore relatively
little on visibility (up to the limit imposed by your eyes’ sensitivity
to light), as long as the fractional reduction in brightness is the same
for both.

Atmospheric scattering reduces contrast by adding a source of
radiation to the line-of-sight that is independent of the brightness of
whatever is at the far end of the path. Since this source is integrated
along the line-of-sight, a long path produces a greater reduction in
contrast than a short path. The distance at which the contrast of an
object is reduced to the minimum level required for visual detection
defines the visibility.

Let’s analyze the visibility problem quantitatively, by consid-
ering the contribution of single-scattered radiation to the radiance
along a finite horizontal path s. Because of the latter condition, we
can’t use the plane-parallel form of the RTE but must start with an
adaptation of (11.9):
| dl

d(Bes)

where [ is the intensity measured horizontally in azimuthal direc-
tion ¢, ] is the scattering source function given by

=147, (11.38)

~

T =10 || plro, o0, 9) 1Y) d', (11.39)
7T Jan
and s is the distance in the direction toward the observer.

For this problem, we can assume a horizontally homogeneous
atmosphere, so that both the extinction coefficient . and the scat-
tering source function | are constant along the line-of-sight. With
these assumptions, we can integrate (11.38) to get

I(S) = I(0)e P + <1 - e—ﬂes) R (11.40)

where I(0) is the “intrinsic” radiance of the remote scene as seen
without any intervening atmosphere, and I(S) is the brightiness of
the same scene at the observer’s distance S. We see that the ob-
served intensity is just a weighted average of the intrinsic bright-
ness of the distant object and the scattering source function, with

the weight being the path transmittance ¢ = e~Pe> for the first term
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and 1 — t for the second. Obviously, if ¢ = 0, we see only the atmo-
spheric scattering and no trace of the object at s = 0.

m the steps of the denvahon of (1140) frOm
: e r tegrat]ng factor e‘BeS -

Now let’s use the above equation to compute the contrast of a
black object with I(0) = 0 viewed against a white background with
intensity I'(0):

I'(s) - I(S) _ I'(0)¢

R 17 () S (1 T c gy

(11.41)

We are interested in the distance S corresponding to the minimum
contrast that still permits the human eye to distinguish the object
from its background, so we invert the above equation to get

1 r'oy(r1-co

—In
> = B, Cj

Now all that is left is to make reasonable assumptions about I'(0),
C,and J.

For the background, we assume an intensity I'(0) = aFy, where
n depends on the reflective properties of the background for the par-
ticular viewing geometry and direction of the incident sunlight. For
example, if the background is a nonabsorbing Lambertian reflector,
then « < 1/7, with the equality applying in the case of normal solar
incidence.

As before, we'll assume that the atmosphere is optically thin in
the vertical and that the sun is high in the sky, so ‘the scattering
source function can be approximated as

+1] . (11.42)

~o FOCD -
J = Z;P(Hol $0;0,¢) , (11.43)

where 149 is the cosine of the solar zenith angle. We’ll assume that
the phase function can be expressed in terms of the cosine of the
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' scattering angle alone, with

cos@® = Qg - O

= <\/1——]/l%COSA(P, 1—y%sinA<P,]«lo> (1,0,0) (11.44)
= 4/1— pdcosAp

where Ap = ¢ — ¢p is the angle between the viewing azimuth and
the solar azimuth.

We can now substitute the above expressions for | and I'(0),
with o = yg/mand C ~ 0.02, to get

- _1~ 200u0
S~ —1In [_——_LDP(COS o) + 1i| : (11.45)

Be

1.6: Use (11.45) together W1th the phase function for ma—‘f' .
 rine haze glven in Problem 112 to plot the V181b111k ,
s L 'aznnuth A(p relative to the sun’s d1rect10n for two cases: ;10_— 1 and
#o = 0.5. For both cases assume B = 1.0 km“ and @ = 1. Explam, .
differences between the two curves. Are your - results con51stent~” :
. hyour exper1ence7 ‘ o ' -




