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CHAPTER 12

Scattering and Absorption By Particles

In the previous chapter, we introduced the mathematical frame-
work and terminology needed to account for radiative scattering
in the atmosphere. It is safe to say that whenever you find yourself
struggling with a thorny problem involving radiative scattering at
microwave and shorter wavelengths, some kind of particles are to
blame, whether they be molecules or hailstones.!

Formally, the scattering component of the radiative transfer
equation (11.9) depends on the local extinction coefficient B, (since
dT = Peds), single scatter albedo @ and the scattering phase func-
tion p(cos ®). These in turn depend both on wavelength and on the
size, composition, shape and number of suspended particles, in ad-
dition to any absorption contributions by atmospheric gases. The
purpose of this chapter is to examine some basic aspects of the rela-
tionship between a particle’s physical and geometric properties and
its absorption and scattering properties.

Weak scattering can also occur at radio wavelengths due solely to turbulent
fluctuations in the index of refraction of air and/or due to the presence of electri-
cally conducting ionized gases.

iy
!
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Table 12.1: Examples of atmospheric particle types, with representative dimen-
sions and number concentrations. Note that actual values can vary far more widely
than indicated here.

Type

Size Number
Gas molecule ~107%* uym <3 x10¥ cm™3
Aerosol, Aitken < 0.1 ym ~10% cm~3
Aerosol, Large  0.1-1 um ~10? cm™3
Aerosol, Giant  >1 ym ~1071 cm ™3
Cloud droplet ~ 5-50 ym 102-10% cm ™3
Drizzle drop ~100 ym  ~103m™3
Ice crystal 10-102 ym  103-10° m—2
Rain drop 0.1-3mm  10-10> m~3
Graupel 01-3mm  1-10>m™3
Hailstone ~1cm 1072-1 m™3
Insect ~1cm <lm™3
Bird ~10em  <107*m™3
Airplane ~10 m <1km™3

12.1 Atmospheric Particles

12.1.1 Overview

The variety of particles encountered in the atmosphere is enor-
mous. Examples include individual gas molecules, haze, smoke,
dust and pollen particles, cloud droplets and ice crystals, rain drops,
snowflakes, hailstones, insects, birds, and airplanes. Every one of
these examples has at least some practical significance as a scatterer
of EM radiation in the atmosphere.? Table 12.1 gives representa-
tive dimensions and number concentrations for some common at-
mospheric particles.

For the scattering of radiation by particles, size.matters. The size
of a particle is in fact its most important defining characteristic. In
general, particles that are far smaller than the wavelength will scat-
ter only very weakly, though they may still absorb radiation (e.g., the
gas molecules discussed in Chapter 9). We will revisit the question
of what “far smaller” means in a moment.

2The last three of these are significant mainly for radar.
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At the other extreme, if the particle is very large compared to the
wavelength of the radiation, then the laws of reflection, refraction,
and absorption presented for homogeneous media in Chapter 4 can
be used to evaluate o, @, and p(®) for the particle via the approxi-
mate technique known as ray-tracing or geometric optics.>

Unfortunately, many particles in the atmosphere fall in between
the two extremes cited above. For these particles, more complex
methods are needed in order to compute their scattering and ab-
sorption properties. Such methods generally have to consider the
effects of diffraction, constructive and destructive interference and
other wave-related phenomena. |

In this book, we will discuss only those methods applicable
to very small randomly oriented particles (Rayleigh theory) or to
spheres of arbitrary size (Mie theory). Fortunately, a great many
atmospheric particles, from molecules to haze droplets to cloud
. droplets to rain drops to hailstones, are reasonable (though not al-
ways perfect) candidates for one or both of these methods, so we
can cover a fair amount of ground.

12.1.2 Relevant Properties

As already mentioned, the relationship between the size of a parti-
cle and the wavelength of the radiation of interest is of crucial im-
portance to particle’s optical properties as well as to the choice of a
suitable method for calculating those properties. We therefore de-
fine the nondimensional size parameter as

2mr
)L 7

x (12.1)

where r is the radius of a spherical particle. In the case of nonspher-
ical particles, r might represent the radius of a sphere having the
same volume or surface area, depending on the context.

3Even for large particles, geometric optics gives results that are seemingly at
odds with exact theories. The discrepancy is due to the inability of ray tracing
alone to account for subtle bending of light waves passing near the particle. How-
ever, because the bending is slight, it is often acceptable to treat this radiation as if
it had'never been scattered at all, in which case the geometric optics approximation
yields perfectly acceptable results.
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Fig. 12.1: Relationship between particle size, radiation wavelength and scattering
behavior for atmospheric particles. Diagonal dashed lines represent rough bound-
aries between scattering regimes.

Given the value of x, one can immediately determine whether
scattering by the particle is likely to be significant and, if so, which
broad scattering regime — Rayleigh, Mie, or geometric optics — is
most applicable. Figure 12.1 shows how various combinations of
particle type and EM wavelength relate to these regimes.

Another key property is the relative index of refraction m, which
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was defined in (4.19) as

m

I

Ny
N 4

where N, and Nj are complex refractive indices of the particle and
the surrounding medium, respectively. At the risk of slightly over-
simplifying, the real part n, = R(N) governs the phase speed of
propagation of a wave within the material and the imaginary part
n; = $(N) governs absorption. Nj is usually taken to be equal to
one for particles suspended in air, so that m =~ N>. N, depends on
both the composition of the particle and on the wavelength. The
dependence of the refractive index of water and ice on wavelength
was shown in Fig. 4.1.

Finally, the shape of a particle may potentially play a large role
in determining its radiative properties. It is convenient, and there-
fore common, to assume that particles are spheres for radiative
purposes, even when this assumption is not entirely appropriate.
Ice crystals, snowflakes, and solid-phase aerosols (e.g., soot) are
good examples of particles that are far from spherical and there-
fore should really not be treated as such, at least not without promi-
nently posted disclaimers. Unfortunately, computational methods
appropriate for nonspherical particles are far more difficult to work
with and have only recently come into common use with the advent
of fast computers We will not consider them here.

12.2 Scattering by Small Particles

12.2.1 Dipole Radiation

When a particle is sufficiently small relative to the wavelength —
ie., |mlx <« 1 — every part of the particle simultaneously expe-
riences the same externally imposed oscillating electric field. The
response of the particle to the electric field is to become partially
polarized. That is, there is a small displacement of positive charge
within the particle in the direction of the electric field vector, while
there is a displacement of negative charge in the opposite direction.
In short, it becomes an electric dipole, with induced dipole moment
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p. The physical dimensions of p are charge times distance, which
can be interpreted as the net amount of charge Q displaced times an
effective displacement X.

For most particles of interest to us, the dipole moment of a small
spherical particle is proportional to the strength of the external elec-
tric field:

p = aEgexp(iwt) , (12.2)

where & is called the polarizability of the particle. It depends on the
composition and the size of the particle, as well as on the frequency
w = 27tv of the incident wave. Note that # may be complex. Any
nonzero imaginary part implies a phase difference between the real
part of p and the real part of E.

In summary, we have an oscillating dipole whose strength and
 orientation fluctuates in lockstep with the electric field due to the
" incident wave. But an oscillating dipole produces its own oscillating

electric field, and these oscillations propagate outward at the speed
of light. This is of course the origin of the scattered radiation.

Now imagine that the incident wave is traveling in direction 9)
and you are positioned at a large distance R > 1 from the dipole, in
direction €Y. There are several facts we can jot down that will aid
us in visualizing the relationship between the scattered wave at our
location and the incident wave:

1. We know that in any EM wave, the electric field vector is per-
pendicular to the direction of propagation Q.

2. We are assuming here that p is aligned with the electric field
Eg of the incident wave,* so P is also perpendicular to 0.

3. Because of the symmetry of the charge distribution in the

dipole, the electric field vector Egt of the scattered wave at
any location must lie in the plane that contains both p and (V.

4. The strength of the electric field at your location is proportional
to the projection of P as seen from your direction. Specifically,

4Tn other words, we are assuming that the polarizability « is a scalar rather than
a 3 x 3 tensor which would alter the direction of P relative to Eg. This is always
valid for spherical particles composed of an electrically isotropic substance like
water. ~
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Eocat is zero if you are viewing the dipole “end on” and it is
a maximum (for a given distance) when you are viewing it at
right angles. We can put this in mathematical terms by saying
that ﬁscat « sin 7y, where 7 is the angle between Eg (using Fact
2, above) and the scattered direction €Y.

5. Less obvious, but equally important, is that the power radi-
ated by the dipole is proportional to the acceleration of the elec-
tric charge in the dipole. That is to say, a stationary dipole will
create a static electric field but no propagating EM wave, and
it will therefore radiate no energy. A vibrating dipole, on the
other hand, induces a vibrating electric field (and therefore an
outward propagating EM wave) whose amplitude is propor-
tional to the square of the frequency of the vibration.

Facts 4 and 5 together, combined with (12.2), give us the follow-
ing proportionality:
2=

| Egcat| o a—g sin<y &« w

2siny . (12.3)

As discussed in section 2.5, the power per unit area, and therefore the
intensity I, is proportional to the square of the electric field ampli-
tude. Therefore, the scattered intensity is given by the following
proportionality:

] xwhsin®y. . (12.4)

We now want to recast the above proportionality in terms of the
scattering angles ® and ®, where @ is the angle between () and
(Y, and @ is the polar angle about ) measured from an arbitrary
starting point.

For convenience, we let the direction of incidence Q) coincide
with the x-axis, and the incident electric field vector Eq be aligned
with the z-axis, consistent with Fact 2, above. We can then expand
() and €)' in Cartesian coordinates as follows:

O =(1,0,0), (12.5)

QY = (cos ®, sin ® sin ®, sin @ cos D) . (12.6)
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Fig. 12.2: Polar plot of the phase function for scattering by small particles (Rayleigh
scattering). The outermost curve (dashed) represents the scattered intensity for
directions €Y' lying in a plane perpendicular to the electric field vector of the incident
wave. The innermost curve (dot-dashed) corresponds to directions lying in a plane
parallel to the electric field vector. The solid curve represents the scattered intensity
for unpolarized incident radiation, as given by (12.10).

This allows us to write
cosy =20V
=(0,0,1) - &V (12.7)

=sin®cos P,

and
sinffy=1—cos?y =1-— sin? ® cos? @ . (12.8)

Substituting into (12.4) gives
I « w*(1 —sin® @ cos® D) . (12.9)

The above equation contains all of the essential features of what we
will henceforth refer to as Rayleigh scattering. Before we continue,
let’s take a moment to interpret this result:
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e The intensity of scattered radiation is proportional to the
fourth power of the frequency of the incident radiation, assum-
ing that the polarizability « is not a strong function of fre-
quency (this may or may not be true for any given particle).
You should mentally file this piece of information; we will re-
turn to it later.

e For @ equal to either 90° or 270° — in other words, for any
scattered ray lying in the plane perpendicular to Eo, the scat-
tered intensity is both constant and at its maximum value, ir-
respective of @ (the outermost curve in Fig. 12.2).

e For @ equal to either 0° or 180° and ©® = 90° — in other words,
for either of the two directions along the axis of the dipole

— the scattered intensity is zero (see the innermost curve in
Fig. 12.2).

12.2.2 The Rayleigh Phase Function

The complete shape of the Rayleigh phase function for polarized
incident radiation is shown in the top two panels of Fig. 12.3. For
unpolarized incident radiation, the phase function p(®) is obtained
by averaging (12.9) over ® and normalizing according to (11.7) to
get

p(®) = =(1+cos’* @) . (12.10)

blklUJ

The above expression is the one that we normally regard as de-
scribing the scattering phase function of very small particles. It is

depicted as the solid curve in Fig. 12.2 and in the bottom panel of
Fig. 12.3.

erify the derivation of
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[T}

Fig. 12.3: Three-dimensional rendering of the Rayleigh phase function. The vector
() indicates the direction of the incident radiation. The vector E indicates the ori-
entation of the electric field vector in the incident wave. Top: Incident radiation is
vertically polarized. Middle: Incident radiation is horizontally polarized. Bottom:
Incident radiation is unpolarized.
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:‘ Problem 12. 2 From (12 10) show that the asymmetry parameter g
e j,*for Raylelgh scattermg is zero -

3_ 5 /’(Co;c@/(dﬁc@cjw
q,!ﬁ-’ §¢(., Q'Aj:

f

12.2.3 Polarization

Equation (12.10) assumes that the incident radiation is unpolarized.
But note that even if unpolarized light is incident on the particle, the
scattered light will, in general, be polarized. You can convince yourself
of this by imagining yourself positioned in the direction indicated
by the ray labeled E in the middle panel of Fig. 12.3, which is to say,
at a 90° angle to a horizontal beam of incident radiation (e.g., from
the setting sun). At this position, you will observe no scattering
of the horizontally polarized component of the incident radiation.
You will, however, observe the maximum amount of scattering of
the vertically polarized component of the incident radiation. More-
over, the scattered radiation in the latter case will itself be vertically
polarized.

In short, viewing in any direction at 90° to the incident beam,
you will see scattered radiation that is completely polarized. At
most other angles, the scattered radiation is partially polarized, be-
cause neither component is zero. Only in the forward direction
(® = 0°) or the backward direction (@ = 180°), is the degree of
scattering the same regardless of the polarization of the incident ra-
diation; hence, unpolarized incident radiation gives rise to unpo-
larized scattered radiation in these two directions. In general, the
degree of polarization of Rayleigh-scattered radiation is given by

1—cos?®

= — 12.11
1+ cos?@® ( )

Radiation from the cloud- and haze-free sky is dominated by
Rayleigh scattering by air molecules. According to the above equa-
tion, skylight will be unpolarized when looking directly toward or
away from the sun, and 100% polarized when viewing the sky at a
90° angle from the sun.
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In reality, the inevitable presence of aerosols, which are much
larger than molecules and don't satisfy the Rayleigh criterion, re-
duces the polarization somewhat. Also, multiple scattering, which
is weak but not negligible in this instance, further reduces the po-
larization slightly.

Nevertheless, wearing a pair of polarized sunglasses, you can
easily verify the above effect by viewing a portion of the blue sky at
right angles from the sun and rotating the sunglasses (or your head)
about the line-of-sight. The sky will appear darker or lighter, de-
pending on whether the sunglasses transmit or block the polarized
radiation. The bluer the sky (and therefore the less haze present) the
more pronounced the effect will be.

12.2.4 Scattering and Absorption Efficiencies

We were able to infer the scattering phase function for small parti-
cles based on relatively simple handwaving arguments. Let’s now
turn to the question of how much radiation a small particle scatters
and/or absorbs. While it is possible to obtain this information di-
rectly based on the dipole model we developed above (see BHS3,
section 5.2), the complete derivation requires more space and ex-
planation than seems warranted at this introductory level. Among
other things, it would be necessary to explain the relationship be-
tween the (relative) complex index of refraction m of the particle
and its polarizability «, as well as to show how the imaginary part
of a bears on absorption of the incident electromagnetic wave by the
particle.

An alternate way of getting at the same information is to take
the general Mie solutions for spheres of arbitrary size, which I will
briefly discuss in section 12.3, and find limiting expressions for
x < 1. Specifically, you rewrite the solutions as power series in
x and discard all but the first few terms. Here, I will give you the
essential results without going through the derivations (see BHS83,
section 5.1).
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‘General Relationships

To terms of order x#, the extinction and scattering efficiencies, re-
spectively, of a small spherical particle are

2 _ 2 2 4 2
Qe:4x%{m 1[1+x (m 1>m +27m +38}}

m2 -+ 2 15 \m2+2 2m? +3

8 2_1\?
+§x4%{(zz+2) } (12.12)

and

(12.13)

The absorption efficiency is then Q, = Q. — Qs. For sufficiently
small x (see BHS83, p. 136 for details), Q, simplifies to

: 2
/j‘: ;‘»&J"‘q Qa = 4xS {m —1 } : (12.14)
Pect

Mz Tefrclve -y
We see that the absorption efficiency Q, is proportional to x, while
the scattering efficiency Qs is proportional to x*. It follows that, for
sufficiently small x, and assuming that m has a nonzero imaginary
part,

Qs € Qa = Qe, (12.15)

and the single scatter albedo

@ g-: o x3 . (12.16)

The above relationships have a number of important practical im-
plications for atmospheric radiation and remote sensing. We will
highlight a few of these here.



| 356 | 12. Scattering and Absorption By Particles

| Scattering Cross-Section

First of all, if we assume that we’re in a part of the spectrum where
m for our particle varies slowly with wavelength, then according
to (12.13) the scattering eff1c1ency Qs of a particle in the Raylelgh
limit is proportional to x*, which is in turn proportional to (r/A)*
or, equivalently, to (rv)%. [Recall that we already saw this propor-
tionality in (12.9), since w = 27v.] The scattering cross-section 0s,
which is what actually determines how much radiation is scattered,
is of course the product of Qs with the particle cross-sectional area
712, so that

05 & % | Sceblamy (12.17)
cresc %AO-«.

This proportionality is well worth memorizing, as long as you also re-
member that it’s only valid in the Rayleigh regime —i.e., for x < 1.

Single Scatter Albedo

The second relationship worth commenting on is (12. 16) Wthh tells
us that the single scatter albedo for small particles goes with x3. Of
course this is only true for particles that are at least slightly absorb-
ing; if the imaginary part of m is zero, then @ = 1 no matter how
small x.

What this means in practice is that for sufficiently small x you
can pretty much forget about scattering and focus instead on just
the absorption properties of the particles. This limiting behavior
arises in at least two important cases: (1) molecular absorption (but
not scattering) of thermal infrared radiation by atmsospheric gases
(see Chapter 9), and (2) absorption (but not scattering) of microwave
radiation by cloud droplets.

Mass Absorption Coefficient

Not only can you forget about scattering in the limit of small x, buta
surprisingly convenient fact emerges concerning absorption by par-
ticles in this limit. Recall that the mass absorption coefficient k, of
a substance is defined as its absorption cross-section per unit mass.
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For a spherical particle of radius r and density p, we can write

2
k, = Qartr 3Qa

= a3 dgr (12.18)

Substituting (12.14) and (12.1), we have
| Approt: s

6m _ (m?2—1
ko= —& { } . f-‘er (12.19)
p)L m? +2 §00+ 4-«2 UI‘SO.LlQ }

Note that there is no dependence here on the particle radius r!

" Imagine a volume V of air containing a number of spherical par-
ticles (e.g., cloud droplets) which may be of various sizes but which
are in any case all much smaller than the wavelength of interest.
We can write the volume absorption (= extinction) coefficient (di-
mensions of inverse length) in terms of the sum of the particles’
individual absorption cross-sections ¢ as follows:

1
By = 7 ;(Ti _ (12.20)
But 0; = k,M;, where M,; is the mass of the droplet, so we have
B —le M; =k lZM- (12.21)
a — V - a T aV Z 1 :

or, quite simply,

Ba =kap, (12.22)

where p is just the combined mass of the substance (e.g., cloud wa-
ter) per unit volume of air. We therefore conclude that for radiation
passing through a cloud of sufficiently small absorbing particles, the total
absorption is equal to k, [as given by (12.19)] times the total mass path,
regardless of the exact sizes of the constituent particles.

Summary

Let us conclude this section by summarizing some key facts about
scattering and absorption in the Rayleigh regime:
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1. If you have a particle of fixed size and expose it to radiation
with two different wavelengths A; < A, then it will scatter the
shorter wavelength A; more strongly by a factor of (A2/ M)t

2. If you have radiation of a fixed wavelength A and use it to
illuminate two particles of radius r1 < 7, the larger particle
will scatter the radiation more strongly by a factor (r2/71)°.

3. For sufficiently small particles with complex (not pure real)

" refractive index m, scattering is negligible and absorption is

proportional to mass path only, irrespective of particle size. In

this limit, a cloud behaves radiatively like an absorbing gas
rather than a collection of discrete scatterers.

The first of these facts is directly responsible for the blue sky and
the reddish setting sun. The second fact is of central importance to
weather radar. The third is relevant to microwave remote sensing of

cloud water. We will revisit each of these topics in the Applications
section at the end of this chapter.

12.3 Scattering by Spheres — Mie Theory

A brief outline of Mie theory for scattering and absorption by ho-
mogeneous spheres of arbitrary size parameter x and relative in-
dex of refraction m is given by 594 (pp. 235-243). Full derivations
are given by BH83 (pp. 82-107) and LO02 Section 5.2. In a nut-
shell, the Maxwell equations are used to derive a wave equation
for electromagnetic radiation in three dimensional space, and these
are expressed in spherical polar coordinates (r, ¢, ®), with appro-
priate boundary conditions at the surface of the sphere. The result
is a separable partial differential equation, the solution of which is
expressed as an infinite series of products of orthogonal basis func-
tions, including sines and cosines (for the dependence on ¢), spher-
ical Bessel functions (for the dependence on r), and associated Leg-
endre polynomials (for the dependence on cos ©).

If you have already had a course in partial differential equations,
then that last sentence will be at least vaguely intelligible. The bot-
tom line is that the extinction and scattering efficiencies of a sphere
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may be written as

2 & .
Qe = e Y (2n+1)R(an +ba) , (12.23)
n=1
2 & 2 2
Qs = 2 2(2”+1)(|anl + [ba]”) (12.24)
n=1

where the coefficients 4, and b, are referred to as Mie scattering
coefficients and are functions of x and m. The mathematical form
of these coefficients is not particularly informative to the untrained
eye, so they will not be reproduced here.

Similar summations are used to describe the wave scattering
amplitudes as a function of scattering angle ®. These are used to
obtain expressions for the elements of the 4 x 4 scattering phase ma-
trix P;(@) (see 11.2.2). The Pi; element of this matrix is the same as
our scalar phase function p(®) for unpolarized incident light.

As a practical matter, one cannot actually compute an infinite
sum; therefore it is always necessary to truncate the series and keep
only enough terms to yield a sufficiently accurate approximation.
Generally speaking, the required number of terms N is a little larger
than x; the criterion developed by BH83 based on extensive testing
is that N should be the integer closest to x + 4x'/3 + 2. For a typical
cloud droplet of 10 ym radius and a visible wavelength of 0.5 um,
the size parameter x ~ 120; thus the number of terms required in
the summation is 127.

* For much larger particles (e.g. raindrops in the visible band,
with x ~ 10* or more) the number of terms that must be retained is
rather large. Although the computer time required to evaluate these
terms is no longer a huge issue for most applications, numerical
precision begins to suffer due to the accumulation of roundoff error.
There are therefore practical limits to the size of a sphere whose
properties can be evaluated using Mie theory. Geometric optics (or
ray tracing; see Section 4.3.1) becomes the preferred method in such
cases.

12.3.1 Extinction Efficiency for Nonabsorbing Sphere

Figure 12.4 depicts the extinction efficiency Q. as a function of x for
a sphere with m = 1.33. This is a representative value for water in
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Extinction Efficiency (m=1.33)
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Fig. 12.4: The extinction efficiency Q. as a function of size parameter x for a non-
absorbing sphere with m = 1.33, for various ranges of x. (a) “Big picture” view,
showing that Qe — 2 as x — co. (b) Detail for x < 20, with examples of subranges
for which extinction increases with x (reddening) or decreases with x (blueing).
(c) Detail for x < 0.8, comparing the Rayleigh (small particle) approximation and
exact Mie theory.

the visible band. Note that no imaginary part is assumed here, so
the droplet is nonabsorbing (& = 1) for all x.

The top panel (Fig. 12.4a) shows the typical behavior of Q. over
a wide range of x. It starts out at zero for x = 0 and rises mono-
tonically up to about x = 6, where Q. achieves a maximum value
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‘of about 4. In other words, for this value of x, the droplet scatters
four times as much radiation as one might surmise from its cross-
sectional area alone! Thereafter, it exhibits an ever-dampening os-
cillation about a mean value of 2, which is the limiting value of Q.
for large x (recall that we already exploited this behavior in sec-
tion 7.2.3).

At the other end of the range, we have the opportunity to com-
pare Q.(= Qs) computed using the exact Mie theory with that ob-
tained for the small-particle (Rayleigh) limit (Fig. 12.4c). We can see
that the agreement is quite good up to about x = 0.6. Beyond that
point, Q. increases less rapidly than the x* dependence predicted
by (12.13).

Reddening/Blueing

Let’s now zoom in on the first couple of big wiggles in the curve
(Fig. 12.4b). Let’s further assume for the moment that r is fixed, so
that variations in x are due to variations in the wavelength A, not
particle size — that is, increasing x implies decreasing A, and vice
versa. Despite allowing the wavelength to vary, we will pretend
(somewhat unrealistically) that m also remains approximately con-
stant, so that our Q. curves are still valid.

With the above assumptions in mind, we find that in the region
0 < x < 6, Q. increases with x and therefore decreases with wave-
length. This means that for radiation passing through a cloud of our
fixed-size particles, the shorter wavelengths will be attenuated more
strongly than the longer wavelengths. This phenomenon is known
as reddening, and is responsible for the reddish color of the setting
sun. In fact, we already found a similar phenomenon in connection
with Rayleigh scattering in the previous section; those findings ap-
plied to particles with x < 1, which is of course a small portion of
the range of x we are looking at right now. '

For x between 6 and 11, on the other hand, extinction is stronger
for longer wavelengths than for shorter, giving rise to blueing of
the radiation passing through our particles. Blueing of sunlight or
moonlight is only very rarely observed; it would require an unusual
distribution of aerosol sizes in order for the blueing effect to dom-
inate over the usual reddening by both air molecules and smaller
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Fig. 12.5: The extinction efficiency as a function of wavelength for water droplets
of the indicated sizes.

aerosols.’

- Problem 12.3; 3 V151b1e radlatlon spans the Waveleng_, range from

- 04 ],Lm t00.7 ym Assummg that atmospherlc aerosols have approx1— -

i ‘mately the same refractive index m as that used to produce Fig.12.4b,
- determme the range of aerosol radu that Would give rise to bluemg

We can look at the above phenomenon from a slightly different
(and more realistic) perspective by plotting the extinction efficiency

5Large volcanic eruptions occasionally inject matter into the stratosphere that
coalesces into aerosols of fairly uniform size; on rare occasions these may have a
size that leads to blueing of visible light. Some authors have suggested that such
rare events gave rise to the phrase “once in a blue moon.”



(

Scattering by Spheres — Mie Theory 363

versus wavelength for selected water droplet radii, as in Fig. 12.5.
For droplet radii of 0.1 and 0.3 um, which are characteristic of small
haze droplets, extinction is a strong function of wavelength, with
short wavelengths (e.g., UV-A, violet, blue) being extinguished far
more strongly than longer wavelengths (red, near IR). This is again
the classic reddening behavior that we observe on a hazy day, espe-
cially when the sun is low in the sky.

At an intermediate radius of 1 um, the extinction behavior is
more complex. Near infrared wavelengths are fairly strongly at-
tenuated, violet light (near 0.4 ym) and red light (near 0.7 um) is
attenuated slightly less strongly, and there is a pronounced mini-
mum in extinction between 0.5 and 0.6 yum. We can conclude that
if the aerosol population of the atmosphere consisted primarily of
droplets of 1 ym radius, the setting sun would take on a rather un-
natural greenish hue!®

The largest radius for which Q. is plotted in Fig. 12.5 is 10 um,
which is a typical radius for ordinary cloud droplets. Over the en-
tire range of wavelength plotted, Q. ~ 2. The lack of strong wave-
length dependence is why the color of sunlight passing through thin
clouds is not noticeably altered by the encounter. Even the obvious
wiggles seen on this curve are actually irrelevant in practice, be-
cause cloud droplets never have exactly one size but rather are dis-
tributed over a fairly broad range of sizes. Even a fairly small 10%
variability in droplet size would be enough to average away most
of the wiggle structure in the Q. curve.

12.3.2 Extinction and Scattering by Absorbing Spheres

Let’s now broaden our perspective in the following two ways: (1)
we will allow the imaginary part of m to be nonzero, and (2) we
will look at not only Q. but also the absorption efficiency Q,, the
single scatter albedo @, and the scattering asymmetry parameter g.
Representative results are shown in Fig. 12.6. Based on these plots

61t is tempting, though probably futile, to speculate on a possible role for 1 ym
haze or cloud droplets in the sickly greenish light that is observed to accompany
some severe thunderstorms. Various other physical mechanisms have been pro-
posed; as of this writing none has been widely embraced as the definitive explana-
tion for green thunderstorms, partly because of the scarcity of direct measurements
that could be used to test the various theories.

Yos! Near Sunset, Prdelensy (B1ur Fenoved ) by Ly st
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Fig. 12.6: Key optical properties of spheres as functions of x, for varying values of
the imaginary part of m.

we can make the following general statements:

e Increasing absorption by the particle material (by increasing
the imaginary part of m) has the effect of suppressing the wig-
gles in the curve of Q.. Apart from that change, the curves
are similar, all having a limiting value of approximately 2 for
large x.

e In the limit as x goes to zero, the single scatter albedo also
goes to zero, as predicted by (12.16). The sole exception is if
S(m) = 0 (not shown), in which case @ = 1 regardless of x.

* For x > 10, there is no completely predictable relationship

.
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between (m) and either Q, or @ . The absorption tends to
increase with small increases in (m), as you might expect,
but the trend reverses when &(m) is of order one — parti-
cles with large &(m) scatter more effectively than those with
smaller &(m).

e For &(m) = 0, there is considerable fine ripple structure in
the curves for both Q. and g. The presence of even slight ab-
sorption (e.g., the case m = 1.33 + 0.0017) pretty much elimi-
nates these ripples. But even for nonabsorbing particles, these
fine ripples tend to be unimportant. This is because you never
have particles all having the same exact value of x but rather a
mix of particles of various sizes. When combining the contri-
butions from various sizes, the small ripples quickly average
away.

e For x = 0, the asymmetry parameter g is also zero, as expected
for Rayleigh scattering. As x increases, g very rapidly in-
creases as well, plateauing somewhere in the range from about
0.8 and 0.95.

Forward Scattering

The last item is worthy of particular attention. It indicates that parti-
cles comparable to or larger than the wavelength tend to strongly forward
scatter, as contrasted with the case that x < 1, for which the back-
ward and forward scattered components are about equal. It turns
out that this observation is generally applicable not only to spheres but to
particles of all types and shapes. This behavior is due to constructive
interference in the forward direction by waves scattered by different
parts of the particle, as discussed for example by 594 (Section 5.2.1).

12.3.3 Scattering Phase Function

The forward-scattering properties of larger particles becomes even
more apparent as we turn our attention to the scattering phase func-
tion p(@) of our spheres, as depicted for example in Fig. 12.7.

For x = 0.1 (bottom), we have the classical Rayleigh phase func-
tion, which is symmetric in the forward and backward directions.
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Scattering Phase Function
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Fig. 12.7: Plots of Mie-derived phase functions p(®) for various values of x, assum-
ing m = 1.33 (fine-scale oscillations in the curves for large x have been smoothed
out by allowing x to vary over a narrow range). The vertical scale is logarithmic
but otherwise arbitrary; each curve has been displaced upward from the previ-
ous one for clarity. Note increasing asymmetry and complexity of phase functions
with increasing x. The topmost curve (x = 10, 000) is very similar to that predicted
by geometric optics except for the narrow forward and backward peaks at 0° and
180°. See Figs. 12.8 and 12.9 for polar plots of some of these same curves.
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For slightly larger xA, there is a tendency for the phase function in
the forward direction ® < 90° to have larger amplitude than in the
backward direction.

By the time we get to x = 3, we have a broad lobe of enhanced
scattering for ® between about 0° and 40°. Within that range, the
amplitude of p(®) is around a factor of 100 larger than it is for ®
between 120° and 180°. Now watch this forward-scattering lobe
carefully as we move upward on the figure — it becomes both nar-
rower and more intense with increasing x. In fact, for very large x, this
so-called forward diffraction peak, starts to resemble a /-function and
falls right on y-axis in Fig. 12.7, so that it can no longer be distin-
guished.

At the same time as the forward scattering peak gets narrower
with increasing x, the rest of the phase function becomes more com-
plex, exhibiting an ever greater number of ripples. By the time
we get to x = 100, we start to see unmistakable signs of an en-
hanced scattering feature near ® = 140°. This feature also sharpens
and intensifies dramatically with increasing x, until there is nearly
a hundred-fold difference between the amplitude of the peak at
® = 137° and the “floor” of the valley at just a slightly smaller

x=10

x=3

o O

x=0.1 @

Fig. 12.8: Polar plots of the Mie-derived scattering phase function p(®) for selected
values of x.
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angle!  This feature is the primary rainbow whose existence was
previously explained in section 4.3.1 using the ray tracing method
(Fig. 4.8) and assuming a single internal reflection of the ray. The
slightly weaker peak at ® = 130°, just to the left of the primary
rainbow, is the secondary rainbow, which is associated with rays
undergoing two internal reflections in the sphere.

In summary, the Mie solution, which is based on an infinite se-
ries solution of the EM wave equation with suitable boundary con-
ditions, yields results which basically converge to the geometric op-
tics results, once we let x get large enough. In fact, for x > 2000
or so, we have crossed out of the range of x for which Mie theory
is traditionally applied (see Fig. 12.1). Even for very large x, how-
ever, there are aspects of scattering by particles that geometric op-
tics alone can never explain, such as the forward diffraction peak
as well as the intensified scattering near 180° known as the glory.

The polar plots in Fig. 12.8 and Fig. 12.9 provide an alternative
way of visualizing the evolution of the phase function with increas-
ing x. In the first of these, the amplitude of the phase function is pro-
portional to the distance along a particular radial at angle ®, with
® = 0 pointing horizontally to the right. For x = 0.1 we again have
the symmetric Rayleigh phase function; you'll probably recognize
the shape from Figs. 12.2 and Figs. 12.3. For even modest increases
in x, the asymmetry quickly becomes very pronounced. By the time
we reach x = 10, the forward scattering lobe is already so intense
that it no longer fits on the page!

For larger x, we can tame the extreme features of the phase func-
tion by making the radial amplitude proportional to the logarithm
of p(cos @) (Fig. 12.9). Among other things, these plots allow us
to clearly see, for the first time, what’s happening at ® = 0° and
® = 180°. There are a few features that deserve special mention,
because they are associated with commonly observed optical phe-
nomena: : |

Forward Diffréction Peak

We have already mentioned the strong forward scattering that oc-
curs in connection with larger particles, spherical or not. This phe-
nomenon is readily observable in daily life. It is much harder to
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Fig. 12.9: Similar to Fig. 12.8, but plotted as log[p(®)] so as to better accommodate
the extreme variations in the amplitude of the phase function for large x. Com-
monly observed optical features associated with the phase function are indicated.
Note the é-function-like characteristic of the forward and backward peaks for the
largest values of x.
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see through the glare of a dirty windshield when driving toward
the sun than away. Dust particles settling through a shaft of sun-
light in a room are easiest to spot when looking generally toward
the source of the light. The rays of light from the setting sun emerg-
ing from a break in the clouds (so-called crepuscular rays) are most
evident when viewed in the general direction of the sun.

Fig. 12.9 makes much clearer the profound narrowing of the
diffraction peak with increasing x. For x = 10,000, the peak is so
narrow that the scattered radiation it represents might as well be
considered as never having been scattered at all. In the geometric
optics approximation, this feature doesn’t even exist! In fact, while
Mie theory predicts Q. ~ 2 in the limit of large x, geometric op-
tics always predicts Qe = 1. The forward diffraction peak is largely
responsible for the discrepancy.

Corona

For intermediate values of the size parameter x, the forward diffrac-
tion peak is accompanied by number of weaker sidelobes. If you
were to view the sun through a very thin cloud made up of iden-
tical spherical droplets with x of order 100 or less, you would see
a series of closely spaced rings immediately surrounding the light
source. Moreover, because the precise angular position of the rings
depends on wavelength, the rings would be brightly colored. This
optical feature is known as a corona.

Coronas observed in real clouds are more diffuse, and less
brightly colored, than the corona you would expect from a cloud
composed of identical droplets. In fact, one reason colored coronas
are rarely observed at all is because few clouds have a sufficiently
narrow distribution of drop sizes.”

Far more commonly you will just see a diffuse circular bright
patch surrounding the sun with little if any coloration. This feature
represents a blending of both the forward diffraction peaks and the
sidelobes contributed by a variety of different drop sizes.

7 Another reason, of course, is that only true enthusiasts of optical phenomena
take time each day — and risk their eyesight — in order to stare almost directly at
the sun in the hope of spotting a spectacular corona!
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Glory

The glory is in many respects analogous to the forward diffraction
peak and the corona, except that it is exactly on the opposite end of
the phase function. It is called a “glory” because if you stand ona -
hill overlooking a fog bank with the sun at your back, you will see
a bright patch or ring surrounding the shadow of your head in a
manner reminiscent of medieval paintings of saints.

A much more predictable setting for observing glories is as a
passenger in an airplane flying above a cloud layer, from whence
a bright ring is often seen immediately surrounding the shadow of
the airplane. If the airplane is high enough above the cloud layer,
the shadow will be too indistinct to see but the glory will be visible
nonetheless.

As was also the case for the corona, glories may involve multiple
rings and vivid colors, provided only that the range of drop sizes is
sufficiently narrow. More commonly, the glory is seen as a fairly
indistinct white ring or circular bright patch.

For very large x, the glory narrows to a J-function-like spike
in the exact backscattering direction ® = 180°. Like the forward
diffraction peak, the glory is a feature not predicted by geometric
optics, at least for spheres with the index of refraction of water.®

Fogbow/Rainbow

We already mentioned the occcurence of sharp spikes in the scat-
tering phase function corresponding to the primary and secondary
rainbows. The positions of these features are noted on the polar
plot for x = 10,000 in Fig. 12.9. For smaller x, the primary rainbow

8You have probably noticed that a lot of street signs, license plates, reflective
leg straps for bicycle riders, etc., are intensely reflective when the light source is
very close to being in line with the object and the observer. For example, when ap-
proaching a stop sign at night from a couple of blocks away, your own headlights
cause the sign to light up brightly, whereas illumination by light sources in other
directions doesn’t have nearly as intense an effect. Close examination reveals the
presence of retroreflective beads, which are simply small spheres with an index of
refraction falling between approximately 1.5 and 2.0, For_this range of index of
refraction, geometric optics is able to explain the unusually strong backscatter as
the result of rays that pass into the sphere and experience total internal reflection

on the far side. >
am— T ——
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feature is still present but not nearly as sharp. Because the peak
is much more diffuse, the separation of colors (due to varying n,)
will not be nearly as vivid as you find in a “normal” rainbow, and
you will instead observe a more or less whitish ring centered on the
point opposite the sun (i.e., centered on your own shadow). In this
case, a better name for the feature is foghow, because it arises (for
visible light) when the water droplets have a size characteristic of
fog and clouds rather than rain.

Problem 12.4: Assummg a Wavelength Az O 5 ;tm Whlch is near
~ the middle of the visible band, determine the water droplet radii cor-
. respondmg to each of the three phase ﬁmctlons depicted in Fig. 129. -

12.4 Distributions of Particles

The atmosphere never contains particles of just one size. In per-
forming radiation transfer calculations for clouds and aerosols, it is -
invariably necessary to start out by determining the combined op-
tical properties of a distribution of particles of varying sizes and,
possibly, shapes and compositions. We will limit our attention to
the case of varying size only, though the formal extension to shape
and composition is straightforward.

In Section 7.4.4, I already introduced the concept of a size distri-
bution function n(r) for cloud droplets. To refresh your memory,

(r) dr = number of droplets (per unit volume of
air) whose radii fall in the range [, r + dr|

}.am&

The same concept is applicable to any particle type.
We already saw that the volume extinction coefficient for the dis-
tribution of particles described by n(r) is

wm:Am(maﬁfﬁ_ﬂ“ au@

In other words, the total extinction S, is equal to the extinction cross-
section contribution from a single particle of radius r multiplied by
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the number of particles (per unit volume) having that radius and
then integrated over all possible radii.

A completely analogous relationship gives the scattering coeffi-
cient

Ps = /O ) n(r)Qs(r)rer* dr . (12.27)

From there, we immediately have the single-scatter albedo of the
distribution as @ = Bs/ Be.

The combined scattering phase function is the scattering cross-
section weighted average of the individual phase functions:

1
Bs

which also implies a combined asymmetry parameter of

p(cos @) = /Ooo n(r)Qs(r)tr?p(cos ®; ) dr , (12.28)

g = é /Ooo n(r)Qs(r)mr?g(r) dr . (12.29)

12.5 Applications to Meteorology, Climatology,
and Remote Sensing

12.5.1 The Scattering Properties of Clouds

The radiative properties of clouds, including their ability to reflect
and absorb both solar and thermal radiation, depend on their opti-
cal depth 7*, their single scatter albedo @ and the scattering phase
function p(cos ®). These properties in turn depend on the size pa-
rameter x and on the complex index of refraction m for the cloud’s
constituent particles. Both x and m depend on wavelength A, and
x also depends on the droplet radius r. The index of refraction m
depends on composition and material phase as well, but for most
clouds, there are only two possibilities: liquid water or ice.

For reasonably large x, we already saw that Q. ~ 2, so that the
optical thickness T* can often be taken to be almost independent of
wavelength. The phase function p(®) is adequately characterized
for many purposes by the asymmetry parameter g, which we saw
tends to hover in the fairly narrow range 0.8-0.9 for x greater than
around 10. |
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Fig. 12.10: Single scatter albedo (or co-albedo) as a function of wavelength for
water and ice spheres of various sizes. The left column depicts @ over the entire
visible, near IR and thermal IR range. The right column depicts the scattering co-
albedo (defined as 1 — @) for just the solar band. The top row compares water and
ice for particle radius r = 20 ym; the bottom row compares water droplets of three
different radii (5, 10, and 20 um).

This leaves the single scatter albedo @ as the one variable that
could potentially have a large influence on how cloud reflectiv-
ity /absorptivity varies with A. And indeed this conjecture is val-
idated by the plots of @ vs. A shown in Fig. 12.10. This information
is represented in two different ways. The first is by simply plotting
@ on a linear vertical axis, as is done in the two panels in the left
column. This is fine for showing the coarse variations of @ with
wavelength but tends to obscure subtle deviations of @ from ex-
actly one (pure scattering, no absorption), which can nevertheless
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be significant for absorption by clouds. Therefore, for the shorter
wavelengths where absorption is comparatively weak, we plot the
scattering co-albedo, defined as 1 — &, on a logarithmic vertical axis.

Here are the basic points you should take away from these plots:

* The visible band (0.4 ym < A < 0.7 ym) coincides almost ex-
actly with a surprisingly narrow portion of the EM spectrum
for which absorption by cloud droplets is, for all practical pur-
poses, zero. You can think of it as an astonishing coincidence
that clouds (when viewed from the sunlit side) appear to our
eyes as white rather than gray, black, or some other color!
As soon as you move into either the UV or near-IR bands, @
quickly decreases to well below 1, settling into the range 0.5-
0.8 for most of the IR band. For even @ = 0.8, the albedo of a
thick cloud is only around 15%.

o At several wavelengths, there is a significant difference be-
tween the single scatter albedo of a spherical ice particle and
that of a water droplet of the same size (top row). For some
of these wavelengths, ice particles are less absorptive than the
water droplets; for others, the reverse is true. These differ-
ences can be exploited by satellite sensors to distinguish ice
phase clouds (cirrus) from water clouds’.

e For most wavelengths, there is a significant dependence of
the single scatter albedo on the droplet radius in liquid wa-
ter clouds (bottom row). As a general rule (although there
are exceptions), a larger droplet has lower @ (i.e., is more
absorptive) than a smaller droplet at the same wavelength.
Once again, satellite remote sensing techniques can exploit
this property to estimate the effective droplet radius ¢ in wa-
ter clouds.

12.5.2 Radar Observations of Precipitation

Radar has become one of the most important observational tools of
operational meteorologists as well as hydrologists. Weather radar

The fact that ice particles in clouds are generally not spheres complicates the
problem somewhat, but the principle is still valid.
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~ allows severe weather systems to be tracked in real-time. It also
allows the monitoring of rainfall with far more detail in both time
and space than is possible with conventional rain gauges.

The basic principle of operation of a radar system is simple.
A transmitter sends out a continuous series of short pulses of mi-
crowave radiation. A sensitive receiver then measures the intensity
of the backscattered radiation as a function of the time elapsed fol-
lowing each transmitted pulse. The time elapsed At is of course just
the round trip distance divided by the speed of light ¢, so that the
one-way distance d to the target is given by

et

1=

(12.30)
The backscattered power P, received by the radar antenna is given
by the following proportionality:

P, o ;’175 , (12.31)
where 7 (Greek letter eta) is the backscatter cross-section per unit vol-
ume of air. It is just the sum of the backscatter cross-sections o, of all
particles in the sampled volume of air V, divided by V:

1
= v ZUb,i / , (12.32)
i

The backscatter cross-section oy, is closely related to to the more fa-
miliar scattering cross-section o5, except that it only accounts for ra-
diation scattered exactly backward toward the radar antenna, rather
than radiation scattered into all directions. As a matter of fact,

0p =05 P(O)|g_,r - (12.33)

Now let’s assume that we're dealing with particles that all have
the same composition (e.g., liquid water), are spherical in shape,
and are distributed in size according to a size distribution function
n(D), where D is the droplet diameter. The assumption of spherical
shape, while approximate, is reasonable for raindrops that are “not
too large.”
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Radar Backscatter from Sphere, A=10.71 cm
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Fig. 12.11: Radar backscatter efficiency Q}, for water and ice spheres at the wave-
length of the WSR-88D operational weather radar.

We can then replace the summation in (12.32) with an integral
involving n(D) and 0y,(D):

n= /0oo op(D)n(D) dD, | (12.34)
or - -
n= /o Qun(D) [ZDZ} n(D) dD, (12.35)

where the term in square brackets is just the cross-sectional area of
a sphere with diameter D, and Qy, is the backscatter efficiency.

If our spherical particles happen to have size parameters x < 1,
then we're in the Rayleigh regime. This means that (a) the Rayleigh
formula (12.13) for o, applies, and (b) the phase function is given by
(12.10). Substituting these into (12.33) gives

2
m? —1

. 4
Qb_4x m2+2

(12.36)

If our particles are too large, then Rayleigh theory no longer ap-
plies, and we have to calculate 1, using Mie theory. Fig. 12.11 shows
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accurate calculations of Q) for a wide range of sizes of water and
ice spheres. The wavelength A = 10.71 cm chosen for these calcula-
tions corresponds to that used by the current-generation operational
weather radar network in the United States.

You can see that for liquid water spheres up to a diameter of
about 6 mm (solid curve), the Rayleigh relationship (12.36) holds to
a high degree of accuracy: each decade (factor ten) increase in D cor-
responds to a four decade (factor 10%) increase in Q. In fact, 6 mm
corresponds to a rough upper limit on the observed sizes of rain-
drops in heavy rain; beyond this size, raindrops tend to be broken

up by aerodynamic forces as they fall.

Hailstones can of course become considerably larger than rain-
drops. It is therefore convenient that the Rayleigh approximation
apparently holds up to a diameter of around 3 cm for a pure ice
sphere (dashed curve). Note that for any given D in the Rayleigh
regime part of the curve, Q, for pure ice is only 20% of that for lig-
uid water. This difference is due to the substantially smaller value

of m for ice in the microwave band, as compared to liquid water'?

_Problem 12. 5 Based on the above mforma’aon, compute the di-
~ ameterof a spherlcal hailstone that has the same radar backscatter
- cross-section oy, (not Q) asa spherlcal ramdrop Wlth a dlameter of

Let’s assume that the hydrometeors (e.g. raindrops, hailstones,
etc.) that are observed by a 10-cm weather radar all fall in the
Rayleigh regime. We can then substitute (12.36) into (12.35) to get

5

o0

m?2 —1|°
n(D)D® dD . (12.37)

m2 + 2

Tt
1=

Substituting this expression back into (12.31), we find that the
backscattered power measured by the radar receiver is

0

P. (12.38)

m2 —1 ZZ
m2 42| d2’

197t is worth keeping in mind, however, that growing hailstones often have a
coating of liquid water. Even a thin coating of water can drastically alter the radar
backscattering properties of an ice particle.
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‘where Z is the reﬂectivity factor, defined as

Z= / " w(DYDS dD . (12.39)
0

In other words, the reflectivity factor is numerically equal to the sum
of the sixth powers of the diameters of all of the drops in a unit volume of
air. The standard units of Z used by meteorologists are [mm®m—3].
An estimate of the reflectivity factor Z at each range d along the beam is
what most weather radars record and display.

Because observed values of Z span an enormous range, mete-
orologists prefer to work with a logarithmic representation of Z,
defining a nondimensional unit dBZ, which means “decibels with
respect to one standard unit of Z.” You convert the reflectivity factor

from standard units to units of dBZ as follows:
Z [dBZ] = 10log,,(Z) , (12.40)

where Z on the right hand side is the numerical value of Z ex-
pressed in standard (dimensional) units of reflectivity. Thus, an in-
crease in reflectivity by 10 dBZ corresponds to a factor ten increase
in Z expressed in standard units. An increase of 30 dBZ implies a
thousand-fold increase in reflectivity.

s Problem 12 6 Dependmg on range a typlcal Weather radar can

- measure reflectivities from as low as —20 dBZ to as hlgh as 70 dBZ.

In terms of phy51ca1 uruts what is the ratio of the two reﬂect1v1ty
factors7 : ; el ~

In converting the received power P; to an estimate of the reflec-
tivity factor Z, the radar processing software assumes a value of
m appropriate to liquid water in (12.38). The displayed quantity is
therefore actually better regarded as an equivalent reflectivity factor Z,
which may or may not be equal to the true reflectivity factor Z de-
fined by (12.39), depending on whether the targets are liquid water
or something else, like ice. If the particles are in fact ice, then

Z, = 0.20Z . (12.41)
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o Problem 12.7: Durmg a partlcular (and pecuhar) ramstorm, each‘
cubic meter of air contains 1000 fa]hng drops, each of identical dlam— =
~eter D. (a) Compute the reﬂechwty factor Z, assuming D = 1 mm.
(b) Repeat for D = 2 mm. (© By what factor did Z i mcrease on ac-
~count of a mere two—fold increase in D7 (d) Express your answers to
i (a)—(c) in units of dBZ. (e) If: you replace the liquid ramdrops with ice . :
~ spheres of the same size, by how many dBZ will the radar-eshmated’ z
 effective reﬂecﬁvfcy Z, be reduced? (f) Notwithstanding Eq. (12.41),
_ hailstorms are often recogmzed on radar dlsplays by Vn:tue of thelr‘
anomalously hzgh Ze Why7 gy !

In actual rainfall, drops do not all have one size but rather are

distributed over a wide range of sizes. Because of the D® depen-
dence in Z, observed reflectivities are heavily influenced by the few
largest drops in the volume of air. A single drop with a diame-
ter 5 mm reflects more microwave radiation than 15,000 drops of
1 mm diameter! And clouds, with their typical droplet diameters of
around 20 um, are completely invisible to all but the most sensitive

radars, despite typical droplet concentrations in excess of 108 m ™3,

Problem 12:8 From the mformatlon glven above concermng doud
_droplets, find a typlcal 1eﬂect1v1ty factor Z for clouds expressed in
~dBZ. o - G

Radar Rainfall Estimation

Raindrops passing through the air eventually reach the surface, and
the rate at which water is deposited (depth per unit time) is known
as the rainfall rate R. One of the most important applications of radar
is the operational estimation of accumulated rainfall for agricultural
and hydrological purposes.

Unfortunately, there is no unique relationship between the rain-
fall rate and the relative number of larger and smaller droplets
present in the column of air. Consequently, there can be no unique
relationship between radar reflectivity Z and rain rate R. However,
we know from experience that heavier rainfall fends to be associated
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~ with a greater number of large raindrops, whereas light rain is usu-
ally characterized by smaller drops. On average, therefore, we expect
heavy rain rates to be associated with large Z and light rain rates to
give rise to correspondingly weaker radar echoes.

Field observations of raindrops have revealed that the dropsize
distribution n(D) for rain is often reasonably well approximated by

n(D) = Npexp(—AD), (12.42)

where Ny and A are parameters that are functions of the rain rate R.
In fact, the most widely used model of the above form is known as
the Marshall-Palmer size distribution, after the researchers who devel-
oped it. In the Marshall-Palmer distribution, Ny is a constant and
A = aR?, where the parameters 2 and b were chosen so as to max-
imize the agreement between the above size distribution function
and a large number of actual observations of drop sizes at various
rain rates.

Itis beyond the scope of this text to discuss the M.-P. distribution
in detail, except to note that, when it is substituted into (12.39) and
combined with suitable assumptions about raindrop fall speed as a
function of D, it is possible to obtain the following Z-R relationship:

Z = 200R'*, (12.43)

where R is assumed to be given in mm hr—!, and Z is in standard
units of mm® m~3. Other assumed (or measured) drop size distri-
butions usually lead to Z—R relationships having a similar form, but
with different values for the two numerical coefficients.

\ Problem 12 9 - Use the Marshall Palmer Z—R rela’aonshlp above ’co ;
_ estimate the rain rates R associated with d1sp1ayed radar reﬂectlv1- ~
tles of (a) 10 dBZ (b) 30 dBZ and (c) 50 dBZ o

12.5.3 Microwave Remote Sensing and Clouds

Microwave radiometers operating at various frequencies from 3 to
183 GHz are assuming an increasingly prominent role in the satel-
lite remote sensing of the atmosphere. One of the main attractions of
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~ the microwave band is the relative transparency of clouds at these
wavelengths, so that some properties of the surface and of the at-
mospheric column can be estimated under nearly all-weather con-
ditions.

At even the high end of the frequency range given above, the
wavelength A is a relatively long 3 mm which, for typical 10 ym
radius cloud droplets, gives size parameter x ~ 0.02. This is so
small that we can ignore scattering, and the mass extinction (ab-
sorption) coefficient k1, of cloud liquid water is accurately given by
(12.19). Figure 12.12 shows how k, varies with frequency over the
microwave band.

Consider a microwave radiometer at ground level viewing ver-
tically incident radiation emitted by the atmosphere. In the mi-
crowave band, the Rayleigh-Jeans approximation allows us to work
with brightness temperature Tp as a convenient stand-in for radi-
ant intensity, with Tg = ¢T, where ¢ is the emissivity of a surface

or atmospheric layer, and T is its physical temperature (see section
6.1.4).

Mass absorption coefficient for cloud water
¥ I I I 1 I 1 I T I ¥

— 0.1F =
[@))} wl pt
v o .
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£
= 0.01 3 E
0.001 =
0'0001 ] 1 | 1 | 1 I 1 ! i | 1 |
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Frequency (GHz)

Fig. 12.12: The mass absorption coefficient for cloud water at microwave frequen-
cies.
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Zenith Microwave Transmittance
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Fig. 12.13: Zenith microwave transmittance of the cloud-free atmosphere for dif-
ferent models of atmospheric temperature and humidity. The vertically integrated
water vapor content associated with each model is given in parentheses.

If we assume for the moment that the cloud-free atmosphere is
perfectly transparent (it is not) and that there is a single cloud layer
with average temperature T and total vertically integrated cloud lig-
uid water L, then the measured brightness temperature is given ap-
proximately by |

Ty =eT = [1—#(L)] T = [1 — exp(—k.L)] T . (12.44)

You could then use your upward-looking microwave radiometer to
estimate the cloud water path by simply (i) solving the above equa-
tion for L, (ii) assuming something reasonable for T, and (iii) plug-
ging in the observed brightness temperature Tp.

The reality is of course slightly more complicated. In particu-
lar, there are two other atmospheric constituents that always con-
tribute additional absorption and emission in the microwave band:
water vapor, and oxygen (Fig. 12.13). If we stay well away from
the 60 GHz and 118 GHz absorption bands due to oxygen, then
the reduction in transmittance due to the dry atmosphere alone is
only a few percent. Furthermore, since the surface air pressure at
any given location, and therefore the total column oxygen content,
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varies only by about 5%, we can get away with assuming a fixed
optical depth 7o due to oxygen.

Water vapor is a bigger problem, because atmospheric column
vapor content V varies from very low (~1 kg m™2) in dry polar
air masses to rather high (up to 60 kg m~2) in humid tropical air
masses. In order to limit the total optical depth due to water vapor,
let’s confine our attention to the spectrum below about 40 GHz, so
that even in the worst case, we still have a zenith transmittance of
at least 60% or so. That way, the atmosphere will never become so
opaque due to water vapor that it becomes hard to see changes in
opacity due to cloud water.

If we assume that the mean emitting temperature of the atmo-
spheric water vapor and oxygen isn't foo different from that of the
cloud layer, then we can write

Tg =~ [1—exp(—1)] T, (12.45)
where the total atmospheric optical depth is approximated as
T 1o+ ki L+kyV, (12.46) |

and ky is the column-averaged mass absorption coefficient of water
vapor. We can divide through by T, rearrange, and take the loga-
rithm of both sides to get

T—1Tp

y = log < > ~ -—]CLL — ](VV - T0 . (12.47)
Given a reasonable value for T, the new variable y is a known func-
tion of the observed Tp. The definition of y is convenient because
it turns out to be a simple linear function of our two unknowns V
and L. Unfortunately, we have one equation in two unknowns, and
so a measurement of Ty at a single wavelength is not sufficient to
uniquely determine both variables.

Let’s therefore design our radiometer to measure Tp at two dif-
ferent frequencies v, and v,. We can then write our equation in ma-
trix form as

vi | _ | kL1 kva L | a1
{ Y2 } a { krp kva } [ 4 } { 0,2 } ' (1249



Applications 385

We now have two linear equations in two unknowns. In principle,
we can solve for L and V as follows:

-1
L . kL,l kV,l Y1 + 0.1
l: Vv } B l: ]CL,Z kV,Z } l: Yo + Top ’ (12.49)

assuming that the inverse of the matrix of absorption coefficients K
exists.

Mathematically speaking, the inverse exists if the determinant
|IK|| # 0, a condition that is almost guaranteed to be satisfied for
any pair of distinct microwave frequencies. Practically speaking,
however, the mere existence of an inverse is not enough! Why not?

Recall that (12.47) was presented as an approximate model of the
dependence of y on L and V. This suggests that we should modify
(12.49) to allow for the likelihood of errors €; in the relationship:

L' ki kva ] [ y1+ 02 €1
= — ’ ’ Sl - , (12.50
[ v } [ kro kva Y2 + 102 € (12:50)
where L' and V' are now estimates of the true L and V. The estimation
error can then be written

L'—L kL,l kV,1 - €1

{ V-V :l - I: kL,Z kV,Z } |: €7 ] . (12'51)
The goal of a remote sensing technique, of course, is to make sure
that the estimation errors are as small as possible. In this instance, it
means ensuring that the matrix K~1 does not excessively “amplify”
the model and/or instrument errors ¢;. Since the magnitude of K™
is proportional to 1/|/K||, it follows that we require not only that
|K|| be nonzero (the strict mathematical requirement for invertibil-
ity) but that it be as large as possible!

In plain English, we want our two sensor channels to respond in
substantially different ways to L and V, so that the opacity contri-
butions of each constituent can be separated with as little ambiguity
as possible. Now, regardless of frequency, k > 0 for both L and V,
so the most we can hope for is that one channel should have a pro-
portionally larger response to V than to L, while for other channel

the reverse should be true. Examination of Figs. 12.12 and 12.13
suggests the way to achieve this: Choose one channel to fall on or
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" near the center of the water vapor absorption line at 22.235 GHz;
choose the second channel to fall between 30 and 40 GHz, where
water vapor absorption is much weaker than for the first channel
but liquid water absorption is significantly stronger. This is in fact
what is done in the design of commercial two-channel microwave
radiometers, though the precise choice of frequencies depends on a
more sophisticated analysis than we have offered here.

Several other subtleties have also been glossed over here with
respect to the optimal inversion of radiometric measurements; these
are best left to a course in remote sensing. Suffice it to say that an
explicit matrix-inverse method, as described above, is usually less
satisfactory than a statistical or semi-statistical method that is cho-
sen so as to minimize the average squared error over the widest
possible range of atmospheric conditions.

e Problem 12 10: Assume that you have an upward lookmg nu—’, ;
~ crowave rad1ometer with channels at 23. 8 GHZ and 31.4 GHz. For
~ the first frequency, take ky 1 = — 0.087, kV 1 = 0.0052, and 01 = 0.02.
- For the second frequency, take kio = 0.15, kyo = 0. 0021, and
To = 0.03. All values for k are in umts of m* 2/ kg Assume a rneani ,:
: atmospherlc temperature T = 280K. i :
~ (a) Approximately ‘what brlghtness temperature TB should each
:channel observe in a perfectly dry atmosphere, W1th V=L=-02
o (b) Repeat your calculation for V = 60 kgm~ Wthh is typlcal‘; :
: of a hurrud tropical atmosphere. TLeave L =0 (i.e, no cloud)
o) Repeat ‘your calculation again, - thls time assuming L
0.3 kg m 2, which i is typlcal of a falrly tthk nonprec1p1tat1ng stra-
~ tocumulus layer - g
e (d) Derlve a retr1eval algonthm for the est1mat10n of V The fmal -
e ""algorlthm should have the form V/ = a;log(T — Tg1) + 2 log(T -
e ‘TB 2)+a3. Prov1de the coefficients a; to four 51gmf1cant figures.
~ (e) Test your algorlthm by applying it to your results from partsV o
= (a) (b) and (c) Do you recover the correct Values of V in each case”



